Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway
Abstract: Kronebreen is a fast flowing, but actively retreating, tidewater glacier that terminates at the head of Kongsfjorden in Western Spitsbergen, Svalbard, Norway. Currently, one main subglacial meltwater conduit marked by a terminus embayment forcefully releases fresh water into the fjord. Bas...
Format: | Dataset |
---|---|
Language: | unknown |
Published: |
Arctic Data Center
2013
|
Subjects: | |
Online Access: | https://search.dataone.org/view/urn:uuid:4e5e35de-1b0f-459e-9e7d-48055c02c8bd |
id |
dataone:urn:uuid:4e5e35de-1b0f-459e-9e7d-48055c02c8bd |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Arctic Data Center (via DataONE) |
op_collection_id |
dataone:urn:node:ARCTIC |
language |
unknown |
topic |
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY |
spellingShingle |
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
topic_facet |
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY |
description |
Abstract: Kronebreen is a fast flowing, but actively retreating, tidewater glacier that terminates at the head of Kongsfjorden in Western Spitsbergen, Svalbard, Norway. Currently, one main subglacial meltwater conduit marked by a terminus embayment forcefully releases fresh water into the fjord. Basal meltwater and debris, evident from very high suspended sediment concentrations of up to 0.22 g L-1 (mean conc. at ≥ 10m depth = 0.1 g L-1) rapidly exit the glacier, forming a density-controlled turbid upwelling from the grounding line at about 60 m depth. Sediment, as coarse as fine sand, is actively transported to the fjord surface and then quickly falls out of suspension. Silt and clay, however, spread laterally above the pycnocline at 10-12 m depth and are transported down-fjord. At about 240 m from the ice cliff and near the meltwater upwelling, the minimum measured sediment mass accumulation rate is 39.62 ± 0.01 g cm-2 a-1 (0.66 g cm-2 d-1; 5.0 mm d-1 vertical dry accumulation rate), and the rate decreases with distance from the ice cliff. Gravity cores taken at distances 630 m and 970 m from the calving margin indicate turbidity current activity beyond the modern morainal bank and adjacent subaqueous grounding-line fan. The base of each turbidite is marked by an increase in mean grain size coincident with an increased magnetic susceptibility. Mapping of the ice margin in 2005 indicates a slowing ice margin retreat rate (21 m a-1 between 1990 and 2005) in comparison with recent decades. This slowing trend may indicate increased overall ice flow rate or the possibility of the glacier beginning to pull out of the fjord. Our field work was conducted in July 2005 as part of the Svalbard REU (Research Experience for Undergraduates) program funded by the US National Science Foundation. The research is aimed at using glacimarine sedimentation as a proxy for modern climate change. Additionally, because of polar amplification in the climate system, studies of regional change expressed in glacial processes throughout the Arctic region are of interest for understanding the heterogeneous impacts of contemporary change. Field methods included use of suspended sediment traps, CTD/OBS instrumentation, water sampling, gravity and box coring, sub-bottom profiling, and iceberg sampling. Our sediment traps measured the highest sedimentation rates recorded in the fjord, but comparison between our measurements and previous studies is problematic for various reasons. However, measured sedimentation rates confirm these glaciers lie on a climatological spectrum between fully cold-based glaciers of Antarctica and warm-based glaciers of Alaska today. For published version, see Trusel, L.D., Powell, R.D., Cumpston, R.M., and Brigham-Grette, J., 2010, Modern glacimarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard: Geological Society, London, Special Publications, v. 344, p. 89–102, doi: 10.1144/SP344.9. |
format |
Dataset |
title |
Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
title_short |
Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
title_full |
Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
title_fullStr |
Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
title_full_unstemmed |
Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway |
title_sort |
trusel 2006 fjord sedimentation associated with a submarine jet and plume discharging into kongsfjorden, svalbard, norway |
publisher |
Arctic Data Center |
publishDate |
2013 |
url |
https://search.dataone.org/view/urn:uuid:4e5e35de-1b0f-459e-9e7d-48055c02c8bd |
op_coverage |
ENVELOPE(11.64,13.34,79.016,78.833) |
long_lat |
ENVELOPE(162.300,162.300,-77.117,-77.117) ENVELOPE(12.657,12.657,78.854,78.854) ENVELOPE(13.333,13.333,78.833,78.833) ENVELOPE(65.600,65.600,-71.142,-71.142) ENVELOPE(11.64,13.34,79.016,78.833) |
geographic |
Arctic Brigham Kongsvegen Kronebreen Norway Reu Svalbard |
geographic_facet |
Arctic Brigham Kongsvegen Kronebreen Norway Reu Svalbard |
genre |
Antarc* Antarctica Arctic Climate change glacier glacier glacier glaciers Ice Sheet Iceberg* Kongsfjord* Kongsfjorden Magnetic susceptibility Svalbard Tidewater Alaska Spitsbergen |
genre_facet |
Antarc* Antarctica Arctic Climate change glacier glacier glacier glaciers Ice Sheet Iceberg* Kongsfjord* Kongsfjorden Magnetic susceptibility Svalbard Tidewater Alaska Spitsbergen |
_version_ |
1811923912621031424 |
spelling |
dataone:urn:uuid:4e5e35de-1b0f-459e-9e7d-48055c02c8bd 2024-10-03T18:45:36+00:00 Trusel 2006 Fjord Sedimentation Associated with a Submarine Jet and Plume Discharging into Kongsfjorden, Svalbard, Norway ENVELOPE(11.64,13.34,79.016,78.833) 2013-11-09T21:39:57Z https://search.dataone.org/view/urn:uuid:4e5e35de-1b0f-459e-9e7d-48055c02c8bd unknown Arctic Data Center EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY Dataset 2013 dataone:urn:node:ARCTIC 2024-10-03T18:06:33Z Abstract: Kronebreen is a fast flowing, but actively retreating, tidewater glacier that terminates at the head of Kongsfjorden in Western Spitsbergen, Svalbard, Norway. Currently, one main subglacial meltwater conduit marked by a terminus embayment forcefully releases fresh water into the fjord. Basal meltwater and debris, evident from very high suspended sediment concentrations of up to 0.22 g L-1 (mean conc. at ≥ 10m depth = 0.1 g L-1) rapidly exit the glacier, forming a density-controlled turbid upwelling from the grounding line at about 60 m depth. Sediment, as coarse as fine sand, is actively transported to the fjord surface and then quickly falls out of suspension. Silt and clay, however, spread laterally above the pycnocline at 10-12 m depth and are transported down-fjord. At about 240 m from the ice cliff and near the meltwater upwelling, the minimum measured sediment mass accumulation rate is 39.62 ± 0.01 g cm-2 a-1 (0.66 g cm-2 d-1; 5.0 mm d-1 vertical dry accumulation rate), and the rate decreases with distance from the ice cliff. Gravity cores taken at distances 630 m and 970 m from the calving margin indicate turbidity current activity beyond the modern morainal bank and adjacent subaqueous grounding-line fan. The base of each turbidite is marked by an increase in mean grain size coincident with an increased magnetic susceptibility. Mapping of the ice margin in 2005 indicates a slowing ice margin retreat rate (21 m a-1 between 1990 and 2005) in comparison with recent decades. This slowing trend may indicate increased overall ice flow rate or the possibility of the glacier beginning to pull out of the fjord. Our field work was conducted in July 2005 as part of the Svalbard REU (Research Experience for Undergraduates) program funded by the US National Science Foundation. The research is aimed at using glacimarine sedimentation as a proxy for modern climate change. Additionally, because of polar amplification in the climate system, studies of regional change expressed in glacial processes throughout the Arctic region are of interest for understanding the heterogeneous impacts of contemporary change. Field methods included use of suspended sediment traps, CTD/OBS instrumentation, water sampling, gravity and box coring, sub-bottom profiling, and iceberg sampling. Our sediment traps measured the highest sedimentation rates recorded in the fjord, but comparison between our measurements and previous studies is problematic for various reasons. However, measured sedimentation rates confirm these glaciers lie on a climatological spectrum between fully cold-based glaciers of Antarctica and warm-based glaciers of Alaska today. For published version, see Trusel, L.D., Powell, R.D., Cumpston, R.M., and Brigham-Grette, J., 2010, Modern glacimarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard: Geological Society, London, Special Publications, v. 344, p. 89–102, doi: 10.1144/SP344.9. Dataset Antarc* Antarctica Arctic Climate change glacier glacier glacier glaciers Ice Sheet Iceberg* Kongsfjord* Kongsfjorden Magnetic susceptibility Svalbard Tidewater Alaska Spitsbergen Arctic Data Center (via DataONE) Arctic Brigham ENVELOPE(162.300,162.300,-77.117,-77.117) Kongsvegen ENVELOPE(12.657,12.657,78.854,78.854) Kronebreen ENVELOPE(13.333,13.333,78.833,78.833) Norway Reu ENVELOPE(65.600,65.600,-71.142,-71.142) Svalbard ENVELOPE(11.64,13.34,79.016,78.833) |