Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology

Abstract: Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measur...

Full description

Bibliographic Details
Main Author: Hemming, Sidney R
Format: Dataset
Language:unknown
Published: IEDA: US Antarctic Program Data Center 2011
Subjects:
Online Access:http://get.iedadata.org/metadata/iso/600094
Description
Summary:Abstract: Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.