Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012

Though surge-type glaciers make up a small percentage of the world’s outlet glaciers, they have the potential to further destabilize the larger ice caps and ice sheets that feed them during a surge. Currently, mechanics that control the duration and ice flux from a surge remain poorly understood. He...

Full description

Bibliographic Details
Main Authors: George Roth, Riko Noormets, Ross Powell, Julie Brigham-Grette, Miles Logsdon
Format: Dataset
Language:unknown
Published: Arctic Data Center 2013
Subjects:
Online Access:https://doi.org/10.18739/A2ZK55K85
id dataone:doi:10.18739/A2ZK55K85
record_format openpolar
institution Open Polar
collection Arctic Data Center (via DataONE)
op_collection_id dataone:urn:node:ARCTIC
language unknown
topic EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
spellingShingle EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
George Roth
Riko Noormets
Ross Powell
Julie Brigham-Grette
Miles Logsdon
Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
topic_facet EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
description Though surge-type glaciers make up a small percentage of the world’s outlet glaciers, they have the potential to further destabilize the larger ice caps and ice sheets that feed them during a surge. Currently, mechanics that control the duration and ice flux from a surge remain poorly understood. Here, we examine submarine glacial landforms in bathymetric data from Engelskbukta, a bay sculpted by the advance and retreat of Comfortlessbreen, a surge-type glacier in Svalbard, a high Arctic archipelago where surge-type glaciers are especially prevalent. These landforms and their spatial and temporal relationships, and mass balance from the end of the last glacial maximum, known as the Late Weichselian in Northern Europe, to the present. Beyond the landforms representing modern proglacial sedimentation and active iceberg scouring, distinct assemblages of transverse and parallel crosscutting moraines denote past glacier termini and flow direction. By comparing their positions with dated deposits on land, these assemblages help establish the chronology of Comfortlessbreen’s surging and retreat. Additional deformations on the seafloor showcase subterranean Engelskbukta as the site of active thermogenic gas seeps. We discuss the limitations of local sedimentation and data resolution on the use of bathymetric datasets to interpret the past behavior of surging tidewater glaciers.
format Dataset
author George Roth
Riko Noormets
Ross Powell
Julie Brigham-Grette
Miles Logsdon
author_facet George Roth
Riko Noormets
Ross Powell
Julie Brigham-Grette
Miles Logsdon
author_sort George Roth
title Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
title_short Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
title_full Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
title_fullStr Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
title_full_unstemmed Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012
title_sort submarine landforms in a surge-type tidewater glacier regime, engelskbukta, svalbard, 2012
publisher Arctic Data Center
publishDate 2013
url https://doi.org/10.18739/A2ZK55K85
op_coverage ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN
ENVELOPE(11.64,13.34,79.016,78.833)
long_lat ENVELOPE(20.000,20.000,78.000,78.000)
ENVELOPE(12.161,12.161,78.767,78.767)
ENVELOPE(11.64,13.34,79.016,78.833)
geographic Arctic
Svalbard
Jan Mayen
Svalbard
Comfortlessbreen
geographic_facet Arctic
Svalbard
Jan Mayen
Svalbard
Comfortlessbreen
genre Arctic Archipelago
Arctic
glacier
Ice Sheet
Iceberg*
Jan Mayen
North Atlantic
Svalbard
Tidewater
genre_facet Arctic Archipelago
Arctic
glacier
Ice Sheet
Iceberg*
Jan Mayen
North Atlantic
Svalbard
Tidewater
op_doi https://doi.org/10.18739/A2ZK55K85
_version_ 1782012278593290240
spelling dataone:doi:10.18739/A2ZK55K85 2023-11-08T14:14:14+01:00 Submarine Landforms in a Surge-Type Tidewater Glacier Regime, Engelskbukta, Svalbard, 2012 George Roth Riko Noormets Ross Powell Julie Brigham-Grette Miles Logsdon ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN ENVELOPE(11.64,13.34,79.016,78.833) 2013-11-08T00:00:00Z https://doi.org/10.18739/A2ZK55K85 unknown Arctic Data Center EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY inlandWaters oceans environment climatologyMeteorologyAtmosphere Dataset 2013 dataone:urn:node:ARCTIC https://doi.org/10.18739/A2ZK55K85 2023-11-08T13:41:16Z Though surge-type glaciers make up a small percentage of the world’s outlet glaciers, they have the potential to further destabilize the larger ice caps and ice sheets that feed them during a surge. Currently, mechanics that control the duration and ice flux from a surge remain poorly understood. Here, we examine submarine glacial landforms in bathymetric data from Engelskbukta, a bay sculpted by the advance and retreat of Comfortlessbreen, a surge-type glacier in Svalbard, a high Arctic archipelago where surge-type glaciers are especially prevalent. These landforms and their spatial and temporal relationships, and mass balance from the end of the last glacial maximum, known as the Late Weichselian in Northern Europe, to the present. Beyond the landforms representing modern proglacial sedimentation and active iceberg scouring, distinct assemblages of transverse and parallel crosscutting moraines denote past glacier termini and flow direction. By comparing their positions with dated deposits on land, these assemblages help establish the chronology of Comfortlessbreen’s surging and retreat. Additional deformations on the seafloor showcase subterranean Engelskbukta as the site of active thermogenic gas seeps. We discuss the limitations of local sedimentation and data resolution on the use of bathymetric datasets to interpret the past behavior of surging tidewater glaciers. Dataset Arctic Archipelago Arctic glacier Ice Sheet Iceberg* Jan Mayen North Atlantic Svalbard Tidewater Arctic Data Center (via DataONE) Arctic Svalbard Jan Mayen Svalbard ENVELOPE(20.000,20.000,78.000,78.000) Comfortlessbreen ENVELOPE(12.161,12.161,78.767,78.767) ENVELOPE(11.64,13.34,79.016,78.833)