Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.

Increasing rates of short-interval disturbances have the potential to rapidly transform ecosystems via shifts in post-disturbance regeneration. While research has explored compound events in multiple biomes, we know little regarding how local site conditions interact with short-interval disturbances...

Full description

Bibliographic Details
Main Author: Katherine Hayes
Format: Dataset
Language:unknown
Published: Arctic Data Center 2020
Subjects:
Online Access:https://doi.org/10.18739/A2R20RZ0B
id dataone:doi:10.18739/A2R20RZ0B
record_format openpolar
spelling dataone:doi:10.18739/A2R20RZ0B 2023-11-08T14:15:00+01:00 Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022. Katherine Hayes Interior Alaska: Focal sites are near the Yukon Bridge on the Dalton and near Central. Exact plot locations within the data. ENVELOPE(-150.0,-144.0,65.5,64.0) BEGINDATE: 2018-01-01T00:00:00Z ENDDATE: 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z https://doi.org/10.18739/A2R20RZ0B unknown Arctic Data Center boreal forest fire resilience regeneration short interval fires reburn Dataset 2020 dataone:urn:node:ARCTIC https://doi.org/10.18739/A2R20RZ0B 2023-11-08T13:48:04Z Increasing rates of short-interval disturbances have the potential to rapidly transform ecosystems via shifts in post-disturbance regeneration. While research has explored compound events in multiple biomes, we know little regarding how local site conditions interact with short-interval disturbances to influence post-disturbance regeneration. Furthermore, questions remain regarding the consequences of continued high frequency events: What happens when emerging new communities are themselves subject to short-interval disturbances? To investigate effects of ongoing short-interval fires on regeneration, we examined post-fire forest regeneration in two locations in interior Alaska. We established 50 plots across a mosaic of fire histories (one, two, or three fires in <70 yr) in an upland and lowland site in interior Alaska. To investigate how shifts in community driven by short-interval fires differ according to local site conditions, we quantified abundance, proportion, and density of conifer and deciduous regeneration in a drier upland site and a wetter lowland site. Both sites were dominated by black spruce prior to burning. In the drier upland site, black spruce (Picea mariana) presence declined sharply after two fires, while paper birch (Betula neoalaskana) became increasingly abundant with each additional fire. In the wetter lowland site, less organic soil was consumed by fire and presence of black spruce persisted through an initial single reburn (two fires), indicating local topography may temporarily buffer reburning impacts. However, after three burns, conifers were effectively eliminated in both upland and lowland stands. Deciduous regeneration differed with site: Birch dominated in upland plots, while willow (Salix spp.) and aspen (Populus tremuloides) dominated in lowlands. These results offer strong empirical evidence of the divergence of boreal successional trajectories from previous historic norms. Furthermore, results from this study demonstrate shifts in post-fire succession in forested ecosystems continue to accumulate with additional short-interval disturbance events, overwhelming the interactive effects of local site conditions. Dataset Alaska Yukon Arctic Data Center (via DataONE) Yukon ENVELOPE(-150.0,-144.0,65.5,64.0)
institution Open Polar
collection Arctic Data Center (via DataONE)
op_collection_id dataone:urn:node:ARCTIC
language unknown
topic boreal forest
fire
resilience
regeneration
short interval fires
reburn
spellingShingle boreal forest
fire
resilience
regeneration
short interval fires
reburn
Katherine Hayes
Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
topic_facet boreal forest
fire
resilience
regeneration
short interval fires
reburn
description Increasing rates of short-interval disturbances have the potential to rapidly transform ecosystems via shifts in post-disturbance regeneration. While research has explored compound events in multiple biomes, we know little regarding how local site conditions interact with short-interval disturbances to influence post-disturbance regeneration. Furthermore, questions remain regarding the consequences of continued high frequency events: What happens when emerging new communities are themselves subject to short-interval disturbances? To investigate effects of ongoing short-interval fires on regeneration, we examined post-fire forest regeneration in two locations in interior Alaska. We established 50 plots across a mosaic of fire histories (one, two, or three fires in <70 yr) in an upland and lowland site in interior Alaska. To investigate how shifts in community driven by short-interval fires differ according to local site conditions, we quantified abundance, proportion, and density of conifer and deciduous regeneration in a drier upland site and a wetter lowland site. Both sites were dominated by black spruce prior to burning. In the drier upland site, black spruce (Picea mariana) presence declined sharply after two fires, while paper birch (Betula neoalaskana) became increasingly abundant with each additional fire. In the wetter lowland site, less organic soil was consumed by fire and presence of black spruce persisted through an initial single reburn (two fires), indicating local topography may temporarily buffer reburning impacts. However, after three burns, conifers were effectively eliminated in both upland and lowland stands. Deciduous regeneration differed with site: Birch dominated in upland plots, while willow (Salix spp.) and aspen (Populus tremuloides) dominated in lowlands. These results offer strong empirical evidence of the divergence of boreal successional trajectories from previous historic norms. Furthermore, results from this study demonstrate shifts in post-fire succession in forested ecosystems continue to accumulate with additional short-interval disturbance events, overwhelming the interactive effects of local site conditions.
format Dataset
author Katherine Hayes
author_facet Katherine Hayes
author_sort Katherine Hayes
title Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
title_short Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
title_full Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
title_fullStr Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
title_full_unstemmed Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
title_sort effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience, 2018-2022.
publisher Arctic Data Center
publishDate 2020
url https://doi.org/10.18739/A2R20RZ0B
op_coverage Interior Alaska: Focal sites are near the Yukon Bridge on the Dalton and near Central. Exact plot locations within the data.
ENVELOPE(-150.0,-144.0,65.5,64.0)
BEGINDATE: 2018-01-01T00:00:00Z ENDDATE: 2020-01-01T00:00:00Z
long_lat ENVELOPE(-150.0,-144.0,65.5,64.0)
geographic Yukon
geographic_facet Yukon
genre Alaska
Yukon
genre_facet Alaska
Yukon
op_doi https://doi.org/10.18739/A2R20RZ0B
_version_ 1782011870258921472