Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard

Abstract: Sediment provenance at the Kronerbreen/Kongsvegen glaciers in Spitsbergen can be used to understand the effects that climate change can have on the sedimentation in fjords, and streams at northern latitudes. These sediments are directly related to glacial processes and reflect the conditio...

Full description

Bibliographic Details
Main Author: ACADIS Community Support
Format: Dataset
Language:unknown
Published: Arctic Data Center 2013
Subjects:
Online Access:https://doi.org/10.18739/A2QK6T
id dataone:doi:10.18739/A2QK6T
record_format openpolar
institution Open Polar
collection Arctic Data Center (via DataONE)
op_collection_id dataone:urn:node:ARCTIC
language unknown
topic EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
spellingShingle EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
ACADIS Community Support
Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
topic_facet EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
description Abstract: Sediment provenance at the Kronerbreen/Kongsvegen glaciers in Spitsbergen can be used to understand the effects that climate change can have on the sedimentation in fjords, and streams at northern latitudes. These sediments are directly related to glacial processes and reflect the conditions under which they formed. Such conditions are sensitive to global climate change, which is amplified in northern latitudes, creating a unique environment for climate change research. Quantitative provenance studies have never been carried out in the Kongsfjorden before, and can provide data for a better understanding of glacial processes and dynamics, and changes in erosional conditions. Particularly, sedimentation rates and sediment grain size distribution can help unravel the glacial history of the area. This study will focus on analyzing the grain size distribution of the material being deposited by the mentioned glaciers and finding the source rock of these sediments. Fine sediment was transported by streams and upflows identified in the field, and fed by the glaciers melting ice. On the other hand, coarser material ranging from cobble to boulder size was deposited by ice, moraines, and alluvial processes. Sediment and rock samples were collected during the months of July and August 2009, along the terminus of the glacier, and in the surrounding areas, respectively. Grain size analysis was performed on the samples using a Malvern Mastersizer with the resulting in different groups showing a change in particle size and sorting depending on the location along the glacier. This analysis is important as mineral composition and transportation is influenced by grain size. Electron microprobe studies were carried out on sediment grains to obtain a rough compositional profile of the sediments, and a first-order mineralogical make-up. The microprobe results provided us with information about composition of some of the minerals present, based on the content of Fe, Ca, K and Al derived from the erosion of the local lithologies. Chemical composition can distinguish sediments derived from different sources, and may ultimately be compared with representative rock samples taken from the moraines. Due to the limited accessibility to some areas, many geological units in the Kongsfjorden area have not been mapped or studied, limiting the possible comparisons with contributing material to the fjord’s seafloor. Remote sensing techniques were used to map lithologies in previously unmapped regions using ENVI®, and ASTER satellite imagery. A GER 3700 radiospectrometer was used to collect spectral properties of the rock samples. These properties were compared to the outcrops in the satellite imagery giving us an idea of the bedrock composition of the area. The results of our research can be compared with future studies in order to obtain information, regarding responses in the glacier dynamics and processes, related to climate change.
format Dataset
author ACADIS Community Support
author_facet ACADIS Community Support
author_sort ACADIS Community Support
title Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
title_short Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
title_full Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
title_fullStr Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
title_full_unstemmed Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard
title_sort zamora 2010 using sediment geochemistry, particle size distribution and remote sensing to study provenance in the kronebreen/kongsvegen glaciers, west spitsbergen, svalbard
publisher Arctic Data Center
publishDate 2013
url https://doi.org/10.18739/A2QK6T
op_coverage ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN
ENVELOPE(11.64,13.34,79.016,78.833)
long_lat ENVELOPE(20.000,20.000,78.000,78.000)
ENVELOPE(13.333,13.333,78.833,78.833)
ENVELOPE(12.657,12.657,78.854,78.854)
ENVELOPE(11.64,13.34,79.016,78.833)
geographic Svalbard
Jan Mayen
Svalbard
Kronebreen
Kongsvegen
geographic_facet Svalbard
Jan Mayen
Svalbard
Kronebreen
Kongsvegen
genre glacier
Ice Sheet
Jan Mayen
Kongsfjord*
Kongsfjorden
North Atlantic
Svalbard
Spitsbergen
genre_facet glacier
Ice Sheet
Jan Mayen
Kongsfjord*
Kongsfjorden
North Atlantic
Svalbard
Spitsbergen
op_doi https://doi.org/10.18739/A2QK6T
_version_ 1800872034922659840
spelling dataone:doi:10.18739/A2QK6T 2024-06-03T18:46:51+00:00 Zamora 2010 Using Sediment Geochemistry, Particle Size Distribution and Remote Sensing to Study Provenance in the Kronebreen/Kongsvegen Glaciers, West Spitsbergen, Svalbard ACADIS Community Support ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN ENVELOPE(11.64,13.34,79.016,78.833) 2013-11-08T00:00:00Z https://doi.org/10.18739/A2QK6T unknown Arctic Data Center EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY inlandWaters oceans environment climatologyMeteorologyAtmosphere Dataset 2013 dataone:urn:node:ARCTIC https://doi.org/10.18739/A2QK6T 2024-06-03T18:08:13Z Abstract: Sediment provenance at the Kronerbreen/Kongsvegen glaciers in Spitsbergen can be used to understand the effects that climate change can have on the sedimentation in fjords, and streams at northern latitudes. These sediments are directly related to glacial processes and reflect the conditions under which they formed. Such conditions are sensitive to global climate change, which is amplified in northern latitudes, creating a unique environment for climate change research. Quantitative provenance studies have never been carried out in the Kongsfjorden before, and can provide data for a better understanding of glacial processes and dynamics, and changes in erosional conditions. Particularly, sedimentation rates and sediment grain size distribution can help unravel the glacial history of the area. This study will focus on analyzing the grain size distribution of the material being deposited by the mentioned glaciers and finding the source rock of these sediments. Fine sediment was transported by streams and upflows identified in the field, and fed by the glaciers melting ice. On the other hand, coarser material ranging from cobble to boulder size was deposited by ice, moraines, and alluvial processes. Sediment and rock samples were collected during the months of July and August 2009, along the terminus of the glacier, and in the surrounding areas, respectively. Grain size analysis was performed on the samples using a Malvern Mastersizer with the resulting in different groups showing a change in particle size and sorting depending on the location along the glacier. This analysis is important as mineral composition and transportation is influenced by grain size. Electron microprobe studies were carried out on sediment grains to obtain a rough compositional profile of the sediments, and a first-order mineralogical make-up. The microprobe results provided us with information about composition of some of the minerals present, based on the content of Fe, Ca, K and Al derived from the erosion of the local lithologies. Chemical composition can distinguish sediments derived from different sources, and may ultimately be compared with representative rock samples taken from the moraines. Due to the limited accessibility to some areas, many geological units in the Kongsfjorden area have not been mapped or studied, limiting the possible comparisons with contributing material to the fjord’s seafloor. Remote sensing techniques were used to map lithologies in previously unmapped regions using ENVI®, and ASTER satellite imagery. A GER 3700 radiospectrometer was used to collect spectral properties of the rock samples. These properties were compared to the outcrops in the satellite imagery giving us an idea of the bedrock composition of the area. The results of our research can be compared with future studies in order to obtain information, regarding responses in the glacier dynamics and processes, related to climate change. Dataset glacier Ice Sheet Jan Mayen Kongsfjord* Kongsfjorden North Atlantic Svalbard Spitsbergen Arctic Data Center (via DataONE) Svalbard Jan Mayen Svalbard ENVELOPE(20.000,20.000,78.000,78.000) Kronebreen ENVELOPE(13.333,13.333,78.833,78.833) Kongsvegen ENVELOPE(12.657,12.657,78.854,78.854) ENVELOPE(11.64,13.34,79.016,78.833)