Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard

Abstract: Understanding the amount and timing of stream inflow to Linnevatnet is of critical importance when attempting to quantify sedimentation. Linnebreen, located 6km south of Linnevatnet, is the largest source for inflow to Linnevatnet. Mass balance measurements, via traditional stake methods,...

Full description

Bibliographic Details
Main Author: ACADIS Community Support
Format: Dataset
Language:unknown
Published: Arctic Data Center 2013
Subjects:
Online Access:https://doi.org/10.18739/A2K026
id dataone:doi:10.18739/A2K026
record_format openpolar
institution Open Polar
collection Arctic Data Center (via DataONE)
op_collection_id dataone:urn:node:ARCTIC
language unknown
topic EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
spellingShingle EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
ACADIS Community Support
Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
topic_facet EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
inlandWaters
oceans
environment
climatologyMeteorologyAtmosphere
description Abstract: Understanding the amount and timing of stream inflow to Linnevatnet is of critical importance when attempting to quantify sedimentation. Linnebreen, located 6km south of Linnevatnet, is the largest source for inflow to Linnevatnet. Mass balance measurements, via traditional stake methods, provide a tool to quantify Linnebreen’s contribution. Furthermore, mass balance studies shed light on the larger climatic regime of the area during the year of observation and provide a means to determine the “health” of the glacier. Historical records of Linnebreen’s 20th century retreat are preserved in aerial photos. Analysis of photos can give insight into the rate of retreat, providing context for the assessment of Linnebreen’s “health.” As anthropogenic climate change becomes a topic of increasing scientific discussion, especially in the arctic, monitoring such ice masses acquires further significance. This study asks the following questions: What is the current “health” of Linnebreen? How has the beginning of the 21st century compared to the past 100 years? What and when does Linnebreen melt during the summer? What is the main agent of melting?
format Dataset
author ACADIS Community Support
author_facet ACADIS Community Support
author_sort ACADIS Community Support
title Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
title_short Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
title_full Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
title_fullStr Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
title_full_unstemmed Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard
title_sort schiff 2005 unsustainable glacier ablation at 78° n latitude, linnébreen, svalbard
publisher Arctic Data Center
publishDate 2013
url https://doi.org/10.18739/A2K026
op_coverage ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN
ENVELOPE(11.64,14.104,78.081,77.943)
long_lat ENVELOPE(20.000,20.000,78.000,78.000)
ENVELOPE(13.933,13.933,77.967,77.967)
ENVELOPE(11.64,14.104,78.081,77.943)
geographic Arctic
Svalbard
Jan Mayen
Svalbard
Linnébreen
geographic_facet Arctic
Svalbard
Jan Mayen
Svalbard
Linnébreen
genre Arctic
Climate change
glacier
Ice Sheet
Jan Mayen
North Atlantic
Svalbard
genre_facet Arctic
Climate change
glacier
Ice Sheet
Jan Mayen
North Atlantic
Svalbard
op_doi https://doi.org/10.18739/A2K026
_version_ 1800870079221465088
spelling dataone:doi:10.18739/A2K026 2024-06-03T18:46:42+00:00 Schiff 2005 Unsustainable Glacier Ablation at 78° N latitude, Linnébreen, Svalbard ACADIS Community Support ATLANTIC OCEAN > NORTH ATLANTIC OCEAN > SVALBARD AND JAN MAYEN ENVELOPE(11.64,14.104,78.081,77.943) 2013-11-10T00:00:00Z https://doi.org/10.18739/A2K026 unknown Arctic Data Center EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY inlandWaters oceans environment climatologyMeteorologyAtmosphere Dataset 2013 dataone:urn:node:ARCTIC https://doi.org/10.18739/A2K026 2024-06-03T18:08:13Z Abstract: Understanding the amount and timing of stream inflow to Linnevatnet is of critical importance when attempting to quantify sedimentation. Linnebreen, located 6km south of Linnevatnet, is the largest source for inflow to Linnevatnet. Mass balance measurements, via traditional stake methods, provide a tool to quantify Linnebreen’s contribution. Furthermore, mass balance studies shed light on the larger climatic regime of the area during the year of observation and provide a means to determine the “health” of the glacier. Historical records of Linnebreen’s 20th century retreat are preserved in aerial photos. Analysis of photos can give insight into the rate of retreat, providing context for the assessment of Linnebreen’s “health.” As anthropogenic climate change becomes a topic of increasing scientific discussion, especially in the arctic, monitoring such ice masses acquires further significance. This study asks the following questions: What is the current “health” of Linnebreen? How has the beginning of the 21st century compared to the past 100 years? What and when does Linnebreen melt during the summer? What is the main agent of melting? Dataset Arctic Climate change glacier Ice Sheet Jan Mayen North Atlantic Svalbard Arctic Data Center (via DataONE) Arctic Svalbard Jan Mayen Svalbard ENVELOPE(20.000,20.000,78.000,78.000) Linnébreen ENVELOPE(13.933,13.933,77.967,77.967) ENVELOPE(11.64,14.104,78.081,77.943)