Global change in marine aquaculture production potential under climate change

Climate change is an immediate and future threat to food security globally. The consequences for fisheries and agriculture production potential are well studied, yet the possible outcomes for aquaculture (i.e., aquatic farming) – the fastest growing food sector on the planet – remains a major gap in...

Full description

Bibliographic Details
Main Authors: Halley Froehlich, Rebecca Gentry, Benjamin Halpern
Format: Dataset
Language:unknown
Published: Knowledge Network for Biocomplexity
Subjects:
Online Access:https://search.dataone.org/view/csparks_knb.65.7
id dataone:csparks_knb.65.7
record_format openpolar
spelling dataone:csparks_knb.65.7 2024-06-03T18:47:06+00:00 Global change in marine aquaculture production potential under climate change Halley Froehlich Rebecca Gentry Benjamin Halpern Global ENVELOPE(-180.0,180.0,90.0,-90.0) BEGINDATE: 1985-01-01T00:00:00Z ENDDATE: 2090-01-01T00:00:00Z 2018-08-20T23:00:00Z https://search.dataone.org/view/csparks_knb.65.7 unknown Knowledge Network for Biocomplexity Dataset dataone:urn:node:KNB 2024-06-03T18:11:22Z Climate change is an immediate and future threat to food security globally. The consequences for fisheries and agriculture production potential are well studied, yet the possible outcomes for aquaculture (i.e., aquatic farming) – the fastest growing food sector on the planet – remains a major gap in scientific understanding. With over a third, and growing, of aquaculture produced in marine waters it is critical to anticipate new opportunities and challenges to marine production under climate change. Here we model and map the effect of warming oceans conditions (RCP 8.5) on marine aquaculture production potential over the next century, based on thermal tolerance and growth data of 180 cultured finfish and bivalve species. We find heterogeneous patterns of gains and losses, but an overall greater probability of declines worldwide. Accounting for multiple drivers of species growth, including shifts in temperature, chlorophyll, and ocean acidification (OA), reveals potentially greater declines in bivalve aquaculture compared to finfish production. This study addresses a missing component in food security research and sustainable development planning by identifying regions that will face potentially greater climate change challenges and resilience for marine aquaculture in the coming decades. Understanding the scale and magnitude of future increases and reductions in aquaculture potential is critical for designing effective and efficient use and protection of the oceans, and ultimately for feeding the planet sustainably. Dataset Ocean acidification Knowledge Network for Biocomplexity (via DataONE)
institution Open Polar
collection Knowledge Network for Biocomplexity (via DataONE)
op_collection_id dataone:urn:node:KNB
language unknown
description Climate change is an immediate and future threat to food security globally. The consequences for fisheries and agriculture production potential are well studied, yet the possible outcomes for aquaculture (i.e., aquatic farming) – the fastest growing food sector on the planet – remains a major gap in scientific understanding. With over a third, and growing, of aquaculture produced in marine waters it is critical to anticipate new opportunities and challenges to marine production under climate change. Here we model and map the effect of warming oceans conditions (RCP 8.5) on marine aquaculture production potential over the next century, based on thermal tolerance and growth data of 180 cultured finfish and bivalve species. We find heterogeneous patterns of gains and losses, but an overall greater probability of declines worldwide. Accounting for multiple drivers of species growth, including shifts in temperature, chlorophyll, and ocean acidification (OA), reveals potentially greater declines in bivalve aquaculture compared to finfish production. This study addresses a missing component in food security research and sustainable development planning by identifying regions that will face potentially greater climate change challenges and resilience for marine aquaculture in the coming decades. Understanding the scale and magnitude of future increases and reductions in aquaculture potential is critical for designing effective and efficient use and protection of the oceans, and ultimately for feeding the planet sustainably.
format Dataset
author Halley Froehlich
Rebecca Gentry
Benjamin Halpern
spellingShingle Halley Froehlich
Rebecca Gentry
Benjamin Halpern
Global change in marine aquaculture production potential under climate change
author_facet Halley Froehlich
Rebecca Gentry
Benjamin Halpern
author_sort Halley Froehlich
title Global change in marine aquaculture production potential under climate change
title_short Global change in marine aquaculture production potential under climate change
title_full Global change in marine aquaculture production potential under climate change
title_fullStr Global change in marine aquaculture production potential under climate change
title_full_unstemmed Global change in marine aquaculture production potential under climate change
title_sort global change in marine aquaculture production potential under climate change
publisher Knowledge Network for Biocomplexity
publishDate
url https://search.dataone.org/view/csparks_knb.65.7
op_coverage Global
ENVELOPE(-180.0,180.0,90.0,-90.0)
BEGINDATE: 1985-01-01T00:00:00Z ENDDATE: 2090-01-01T00:00:00Z
genre Ocean acidification
genre_facet Ocean acidification
_version_ 1800876037972688896