Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic

Process modeling of aerosol-cloud interaction is essential to bridging gaps between observational analysis and climate modeling of aerosol effects in the Earth system and eventually reducing climate projection uncertainties. In this study, we examine aerosol-cloud interaction in summertime precipita...

Full description

Bibliographic Details
Main Authors: Li, Xiang-Yu, Wang, Hailong, Christensen, Matthew W., Chen, Jingyi, Tang, Shuaiqi, Kirschler, Simon, Crosbie, Ewan, Ziemba, Luke D., Painemal, David, Corral, Andrea, McCauley, Kayla Ann, Dmitrovic, Sanja, Sorooshian, Armin, Fenn, Marta A, schlosser, joseph, Stamnes, Snorre, Hair, Johnathan, Cairns, Brian, Moore, Richard H, Ferrare, Richard, Shook, Michael, Choi, Yonghoon, Diskin, Glenn S., DiGangi, Joshua Paul, Nowak, John B., Robinson, Claire E, Shingler, Taylor, Thornhill, Kenneth L, Voigt, Christiane
Format: Other/Unknown Material
Language:unknown
Published: Authorea, Inc. 2023
Subjects:
Online Access:http://dx.doi.org/10.22541/essoar.168748394.49974536/v1
id crwinnower:10.22541/essoar.168748394.49974536/v1
record_format openpolar
spelling crwinnower:10.22541/essoar.168748394.49974536/v1 2024-06-02T08:11:33+00:00 Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic Li, Xiang-Yu Wang, Hailong Christensen, Matthew W. Chen, Jingyi Tang, Shuaiqi Kirschler, Simon Crosbie, Ewan Ziemba, Luke D. Painemal, David Corral, Andrea McCauley, Kayla Ann Dmitrovic, Sanja Sorooshian, Armin Fenn, Marta A schlosser, joseph Stamnes, Snorre Hair, Johnathan Cairns, Brian Moore, Richard H Ferrare, Richard Shook, Michael Choi, Yonghoon Diskin, Glenn S. DiGangi, Joshua Paul Nowak, John B. Robinson, Claire E Shingler, Taylor Thornhill, Kenneth L Voigt, Christiane 2023 http://dx.doi.org/10.22541/essoar.168748394.49974536/v1 unknown Authorea, Inc. posted-content 2023 crwinnower https://doi.org/10.22541/essoar.168748394.49974536/v1 2024-05-07T14:19:20Z Process modeling of aerosol-cloud interaction is essential to bridging gaps between observational analysis and climate modeling of aerosol effects in the Earth system and eventually reducing climate projection uncertainties. In this study, we examine aerosol-cloud interaction in summertime precipitating shallow cumuli observed during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE). Aerosols and precipitating shallow cumuli were extensively observed with in-situ and remote-sensing instruments during two research flight cases on 02 June and 07 June, respectively, during the ACTIVATE summer 2021 deployment phase. We perform observational analysis and large-eddy simulation (LES) of aerosol effect on precipitating cumulus in these two cases. Given the measured aerosol size distributions and meteorological conditions, LES is able to reproduce the observed cloud properties by aircraft such as liquid water content (LWC), cloud droplet number concentration (N) and effective radius r. However, it produces smaller liquid water path (LWP) and larger N compared to the satellite retrievals. Both 02 and 07 June cases are over warm waters of the Gulf Stream and have a cloud top height over 3 km, but the 07 June case is more polluted and has larger LWC. We find that the aerosol-induced LWP adjustment is dominated by precipitation and is anticorrelated with cloud-top entrainment for both cases. A negative cloud fraction adjustment due to an increase of aerosol number concentration is also shown in the simulations. Other/Unknown Material North Atlantic The Winnower
institution Open Polar
collection The Winnower
op_collection_id crwinnower
language unknown
description Process modeling of aerosol-cloud interaction is essential to bridging gaps between observational analysis and climate modeling of aerosol effects in the Earth system and eventually reducing climate projection uncertainties. In this study, we examine aerosol-cloud interaction in summertime precipitating shallow cumuli observed during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE). Aerosols and precipitating shallow cumuli were extensively observed with in-situ and remote-sensing instruments during two research flight cases on 02 June and 07 June, respectively, during the ACTIVATE summer 2021 deployment phase. We perform observational analysis and large-eddy simulation (LES) of aerosol effect on precipitating cumulus in these two cases. Given the measured aerosol size distributions and meteorological conditions, LES is able to reproduce the observed cloud properties by aircraft such as liquid water content (LWC), cloud droplet number concentration (N) and effective radius r. However, it produces smaller liquid water path (LWP) and larger N compared to the satellite retrievals. Both 02 and 07 June cases are over warm waters of the Gulf Stream and have a cloud top height over 3 km, but the 07 June case is more polluted and has larger LWC. We find that the aerosol-induced LWP adjustment is dominated by precipitation and is anticorrelated with cloud-top entrainment for both cases. A negative cloud fraction adjustment due to an increase of aerosol number concentration is also shown in the simulations.
format Other/Unknown Material
author Li, Xiang-Yu
Wang, Hailong
Christensen, Matthew W.
Chen, Jingyi
Tang, Shuaiqi
Kirschler, Simon
Crosbie, Ewan
Ziemba, Luke D.
Painemal, David
Corral, Andrea
McCauley, Kayla Ann
Dmitrovic, Sanja
Sorooshian, Armin
Fenn, Marta A
schlosser, joseph
Stamnes, Snorre
Hair, Johnathan
Cairns, Brian
Moore, Richard H
Ferrare, Richard
Shook, Michael
Choi, Yonghoon
Diskin, Glenn S.
DiGangi, Joshua Paul
Nowak, John B.
Robinson, Claire E
Shingler, Taylor
Thornhill, Kenneth L
Voigt, Christiane
spellingShingle Li, Xiang-Yu
Wang, Hailong
Christensen, Matthew W.
Chen, Jingyi
Tang, Shuaiqi
Kirschler, Simon
Crosbie, Ewan
Ziemba, Luke D.
Painemal, David
Corral, Andrea
McCauley, Kayla Ann
Dmitrovic, Sanja
Sorooshian, Armin
Fenn, Marta A
schlosser, joseph
Stamnes, Snorre
Hair, Johnathan
Cairns, Brian
Moore, Richard H
Ferrare, Richard
Shook, Michael
Choi, Yonghoon
Diskin, Glenn S.
DiGangi, Joshua Paul
Nowak, John B.
Robinson, Claire E
Shingler, Taylor
Thornhill, Kenneth L
Voigt, Christiane
Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
author_facet Li, Xiang-Yu
Wang, Hailong
Christensen, Matthew W.
Chen, Jingyi
Tang, Shuaiqi
Kirschler, Simon
Crosbie, Ewan
Ziemba, Luke D.
Painemal, David
Corral, Andrea
McCauley, Kayla Ann
Dmitrovic, Sanja
Sorooshian, Armin
Fenn, Marta A
schlosser, joseph
Stamnes, Snorre
Hair, Johnathan
Cairns, Brian
Moore, Richard H
Ferrare, Richard
Shook, Michael
Choi, Yonghoon
Diskin, Glenn S.
DiGangi, Joshua Paul
Nowak, John B.
Robinson, Claire E
Shingler, Taylor
Thornhill, Kenneth L
Voigt, Christiane
author_sort Li, Xiang-Yu
title Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
title_short Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
title_full Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
title_fullStr Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
title_full_unstemmed Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic
title_sort process modeling of aerosol-cloud interaction in summertime precipitating shallow cumulus over the western north atlantic
publisher Authorea, Inc.
publishDate 2023
url http://dx.doi.org/10.22541/essoar.168748394.49974536/v1
genre North Atlantic
genre_facet North Atlantic
op_doi https://doi.org/10.22541/essoar.168748394.49974536/v1
_version_ 1800757736157216768