Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)

In the summer of 2020, ESA changed the orbit of CryoSat-2 to align periodically with NASA’s ICESat-2 mission, a campaign known as CRYO2ICE, which allows for near-coincident CryoSat-2 and ICESat-2 observations in space and time over the Arctic until summer 2022, where the CRYO2ICE Antarctic campaign...

Full description

Bibliographic Details
Main Authors: Hansen, Renée Mie Fredensborg, Skourup, Henriette, Rinne, Eero, Høyland, Knut Vilhelm, Landy, Jack Christopher, Merkouriadi, Ioanna, Forsberg, Rene
Format: Other/Unknown Material
Language:unknown
Published: Authorea, Inc. 2024
Subjects:
Online Access:http://dx.doi.org/10.22541/essoar.168614619.96485405/v2
id crwinnower:10.22541/essoar.168614619.96485405/v2
record_format openpolar
spelling crwinnower:10.22541/essoar.168614619.96485405/v2 2024-06-02T07:56:27+00:00 Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted) Hansen, Renée Mie Fredensborg Skourup, Henriette Rinne, Eero Høyland, Knut Vilhelm Landy, Jack Christopher Merkouriadi, Ioanna Forsberg, Rene 2024 http://dx.doi.org/10.22541/essoar.168614619.96485405/v2 unknown Authorea, Inc. posted-content 2024 crwinnower https://doi.org/10.22541/essoar.168614619.96485405/v2 2024-05-07T14:19:28Z In the summer of 2020, ESA changed the orbit of CryoSat-2 to align periodically with NASA’s ICESat-2 mission, a campaign known as CRYO2ICE, which allows for near-coincident CryoSat-2 and ICESat-2 observations in space and time over the Arctic until summer 2022, where the CRYO2ICE Antarctic campaign was initiated. This study investigates the Arctic CRYO2ICE radar and laser freeboards acquired by CryoSat-2 and ICESat-2, respectively, during the winter seasons of 2020–2022, and derives snow depths from their differences along the orbits. Along-track snow depth observations can provide high-resolution snow depth distributions which are vital for air-ice-ocean heat and momentum transfer, understanding light transmission, and snow-ice-interactions. Generally, ICESat-2 is backscattered at a surface above the elevation of the CryoSat-2 signal. CRYO2ICE snow depths are thinner than the daily model- or passive-microwave-based snow depth composites used for comparison, with differences being most pronounced in the Atlantic and Pacific Arctic. Satellite-derived and model-based snow estimates show similar seasonal accumulation over FYI, but CRYO2ICE has limited seasonal accumulation over MYI which is linked to a slow increase in ICESat-2, and to some extent CryoSat-2, freeboards. We present a first estimation of along-track snow depth estimates with average uncertainty of 9 +/- 3 cm for 7-km segments, with random and systematic contributions of 7 and 4 cm. These observations show the potential for along-track dual-frequency observations of snow depth from the future Copernicus mission CRISTAL; but they also highlight uncertainties in radar penetration and the correlation length scales of snow topography that still require further research. Other/Unknown Material Antarc* Antarctic Arctic Pacific Arctic Sea ice The Winnower Antarctic Arctic Pacific
institution Open Polar
collection The Winnower
op_collection_id crwinnower
language unknown
description In the summer of 2020, ESA changed the orbit of CryoSat-2 to align periodically with NASA’s ICESat-2 mission, a campaign known as CRYO2ICE, which allows for near-coincident CryoSat-2 and ICESat-2 observations in space and time over the Arctic until summer 2022, where the CRYO2ICE Antarctic campaign was initiated. This study investigates the Arctic CRYO2ICE radar and laser freeboards acquired by CryoSat-2 and ICESat-2, respectively, during the winter seasons of 2020–2022, and derives snow depths from their differences along the orbits. Along-track snow depth observations can provide high-resolution snow depth distributions which are vital for air-ice-ocean heat and momentum transfer, understanding light transmission, and snow-ice-interactions. Generally, ICESat-2 is backscattered at a surface above the elevation of the CryoSat-2 signal. CRYO2ICE snow depths are thinner than the daily model- or passive-microwave-based snow depth composites used for comparison, with differences being most pronounced in the Atlantic and Pacific Arctic. Satellite-derived and model-based snow estimates show similar seasonal accumulation over FYI, but CRYO2ICE has limited seasonal accumulation over MYI which is linked to a slow increase in ICESat-2, and to some extent CryoSat-2, freeboards. We present a first estimation of along-track snow depth estimates with average uncertainty of 9 +/- 3 cm for 7-km segments, with random and systematic contributions of 7 and 4 cm. These observations show the potential for along-track dual-frequency observations of snow depth from the future Copernicus mission CRISTAL; but they also highlight uncertainties in radar penetration and the correlation length scales of snow topography that still require further research.
format Other/Unknown Material
author Hansen, Renée Mie Fredensborg
Skourup, Henriette
Rinne, Eero
Høyland, Knut Vilhelm
Landy, Jack Christopher
Merkouriadi, Ioanna
Forsberg, Rene
spellingShingle Hansen, Renée Mie Fredensborg
Skourup, Henriette
Rinne, Eero
Høyland, Knut Vilhelm
Landy, Jack Christopher
Merkouriadi, Ioanna
Forsberg, Rene
Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
author_facet Hansen, Renée Mie Fredensborg
Skourup, Henriette
Rinne, Eero
Høyland, Knut Vilhelm
Landy, Jack Christopher
Merkouriadi, Ioanna
Forsberg, Rene
author_sort Hansen, Renée Mie Fredensborg
title Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
title_short Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
title_full Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
title_fullStr Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
title_full_unstemmed Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A first examination of winter sea ice during 2020-2022 (accepted)
title_sort arctic freeboard and snow depth from near-coincident cryosat-2 and icesat-2 (cryo2ice) observations: a first examination of winter sea ice during 2020-2022 (accepted)
publisher Authorea, Inc.
publishDate 2024
url http://dx.doi.org/10.22541/essoar.168614619.96485405/v2
geographic Antarctic
Arctic
Pacific
geographic_facet Antarctic
Arctic
Pacific
genre Antarc*
Antarctic
Arctic
Pacific Arctic
Sea ice
genre_facet Antarc*
Antarctic
Arctic
Pacific Arctic
Sea ice
op_doi https://doi.org/10.22541/essoar.168614619.96485405/v2
_version_ 1800756093626875904