Siege of the South: Hunga Tonga-Hunga Ha’apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex

We use Aura Microwave Limb Sounder (MLS) trace gas measurements to investigate whether water vapor (H2O) injected into the stratosphere by the Hunga Tonga-Hunga Ha’apai (HTHH) eruption affected the 2022 Antarctic stratospheric vortex. Other MLS-measured long-lived species are used to distinguish hig...

Full description

Bibliographic Details
Main Authors: Manney, Gloria L, Santee, Michelle L., Lambert, Alyn, Millan, Luis, Minschwaner, Ken, Werner, Frank, Lawrence, Zachary Duane, Read, William G., Livesey, Nathaniel J, Wang, Tao
Format: Other/Unknown Material
Language:unknown
Published: Authorea, Inc. 2023
Subjects:
Online Access:http://dx.doi.org/10.22541/essoar.168057560.00140372/v1
Description
Summary:We use Aura Microwave Limb Sounder (MLS) trace gas measurements to investigate whether water vapor (H2O) injected into the stratosphere by the Hunga Tonga-Hunga Ha’apai (HTHH) eruption affected the 2022 Antarctic stratospheric vortex. Other MLS-measured long-lived species are used to distinguish high HTHH H2O from that descending in the vortex from the upper-stratospheric H2O peak. HTHH H2O reached high southern latitudes in June–July but was effectively excluded from the vortex by the strong transport barrier at its edge. MLS H2O, nitric acid, chlorine species, and ozone within the 2022 Antarctic polar vortex were near average; the vortex was large, strong, and long-lived, but not exceptionally so. There is thus no clear evidence of HTHH influence on the 2022 Antarctic vortex or its composition. Substantial impacts on the stratospheric polar vortices are expected in succeeding years since the H2O injected by HTHH has spread globally.