The evolutionary pathways for local adaptation in mountain hares
Abstract Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole‐genome sequencing, we identify genetic signatures of local adaptation...
Published in: | Molecular Ecology |
---|---|
Main Authors: | , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2022
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/mec.16338 |
id |
crwiley:10.1111/mec.16338 |
---|---|
record_format |
openpolar |
spelling |
crwiley:10.1111/mec.16338 2024-06-23T07:52:42+00:00 The evolutionary pathways for local adaptation in mountain hares Giska, Iwona Pimenta, João Farelo, Liliana Boursot, Pierre Hackländer, Klaus Jenny, Hannes Reid, Neil Montgomery, W. Ian Prodöhl, Paulo A. Alves, Paulo C. Melo‐Ferreira, José Fundação para a Ciência e a Tecnologia Horizon 2020 Framework Programme 2022 http://dx.doi.org/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/mec.16338 en eng Wiley http://creativecommons.org/licenses/by-nc-nd/4.0/ Molecular Ecology volume 31, issue 5, page 1487-1503 ISSN 0962-1083 1365-294X journal-article 2022 crwiley https://doi.org/10.1111/mec.16338 2024-06-13T04:23:15Z Abstract Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole‐genome sequencing, we identify genetic signatures of local adaptation in mountain hares ( Lepus timidus ) from isolated and distinctive habitats of its wide distribution: Ireland, the Alps and Fennoscandia. Demographic modelling suggested that the split of these mountain hares occurred around 20 thousand years ago, providing the opportunity to study adaptive evolution over a short timescale. Using genome‐wide scans, we identified signatures of extreme differentiation among hares from distinct geographic areas that overlap with area‐specific selective sweeps, suggesting targets for local adaptation. Several identified candidate genes are associated with traits related to the uniqueness of the different environments inhabited by the three groups of mountain hares, including coat colour, ability to live at high altitudes and variation in body size. In Irish mountain hares, a variant of ASIP , a gene previously implicated in introgression‐driven winter coat colour variation in mountain and snowshoe hares ( L . americanus ), may underlie brown winter coats, reinforcing the repeated nature of evolution at ASIP moulding adaptive seasonal colouration. Comparative genomic analyses across several hare species suggested that mountain hares’ adaptive variants appear predominantly species‐specific. However, using coalescent simulations, we also show instances where the candidate adaptive variants have been introduced via introgressive hybridization. Our study shows that standing adaptive variation, including that introgressed from other species, was a crucial component of the post‐glacial dynamics of species. Article in Journal/Newspaper Fennoscandia Lepus timidus Wiley Online Library Molecular Ecology 31 5 1487 1503 |
institution |
Open Polar |
collection |
Wiley Online Library |
op_collection_id |
crwiley |
language |
English |
description |
Abstract Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole‐genome sequencing, we identify genetic signatures of local adaptation in mountain hares ( Lepus timidus ) from isolated and distinctive habitats of its wide distribution: Ireland, the Alps and Fennoscandia. Demographic modelling suggested that the split of these mountain hares occurred around 20 thousand years ago, providing the opportunity to study adaptive evolution over a short timescale. Using genome‐wide scans, we identified signatures of extreme differentiation among hares from distinct geographic areas that overlap with area‐specific selective sweeps, suggesting targets for local adaptation. Several identified candidate genes are associated with traits related to the uniqueness of the different environments inhabited by the three groups of mountain hares, including coat colour, ability to live at high altitudes and variation in body size. In Irish mountain hares, a variant of ASIP , a gene previously implicated in introgression‐driven winter coat colour variation in mountain and snowshoe hares ( L . americanus ), may underlie brown winter coats, reinforcing the repeated nature of evolution at ASIP moulding adaptive seasonal colouration. Comparative genomic analyses across several hare species suggested that mountain hares’ adaptive variants appear predominantly species‐specific. However, using coalescent simulations, we also show instances where the candidate adaptive variants have been introduced via introgressive hybridization. Our study shows that standing adaptive variation, including that introgressed from other species, was a crucial component of the post‐glacial dynamics of species. |
author2 |
Fundação para a Ciência e a Tecnologia Horizon 2020 Framework Programme |
format |
Article in Journal/Newspaper |
author |
Giska, Iwona Pimenta, João Farelo, Liliana Boursot, Pierre Hackländer, Klaus Jenny, Hannes Reid, Neil Montgomery, W. Ian Prodöhl, Paulo A. Alves, Paulo C. Melo‐Ferreira, José |
spellingShingle |
Giska, Iwona Pimenta, João Farelo, Liliana Boursot, Pierre Hackländer, Klaus Jenny, Hannes Reid, Neil Montgomery, W. Ian Prodöhl, Paulo A. Alves, Paulo C. Melo‐Ferreira, José The evolutionary pathways for local adaptation in mountain hares |
author_facet |
Giska, Iwona Pimenta, João Farelo, Liliana Boursot, Pierre Hackländer, Klaus Jenny, Hannes Reid, Neil Montgomery, W. Ian Prodöhl, Paulo A. Alves, Paulo C. Melo‐Ferreira, José |
author_sort |
Giska, Iwona |
title |
The evolutionary pathways for local adaptation in mountain hares |
title_short |
The evolutionary pathways for local adaptation in mountain hares |
title_full |
The evolutionary pathways for local adaptation in mountain hares |
title_fullStr |
The evolutionary pathways for local adaptation in mountain hares |
title_full_unstemmed |
The evolutionary pathways for local adaptation in mountain hares |
title_sort |
evolutionary pathways for local adaptation in mountain hares |
publisher |
Wiley |
publishDate |
2022 |
url |
http://dx.doi.org/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/pdf/10.1111/mec.16338 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/mec.16338 |
genre |
Fennoscandia Lepus timidus |
genre_facet |
Fennoscandia Lepus timidus |
op_source |
Molecular Ecology volume 31, issue 5, page 1487-1503 ISSN 0962-1083 1365-294X |
op_rights |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
op_doi |
https://doi.org/10.1111/mec.16338 |
container_title |
Molecular Ecology |
container_volume |
31 |
container_issue |
5 |
container_start_page |
1487 |
op_container_end_page |
1503 |
_version_ |
1802644083965952000 |