Annual air temperature variability and biotic interactions explain tundra shrub species abundance
Abstract Questions Shrub vegetation has been expanding across much of the rapidly changing Arctic. Yet, there is still uncertainty about the underlying drivers of shrub community composition. Here, we use extensive vegetation surveys and a trait‐based approach to answer the following questions: whic...
Published in: | Journal of Vegetation Science |
---|---|
Main Authors: | , , , , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2021
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jvs.13009 |
id |
crwiley:10.1111/jvs.13009 |
---|---|
record_format |
openpolar |
spelling |
crwiley:10.1111/jvs.13009 2024-06-23T07:49:59+00:00 Annual air temperature variability and biotic interactions explain tundra shrub species abundance von Oppen, Jonathan Normand, Signe Bjorkman, Anne D. Blach‐Overgaard, Anne Assmann, Jakob J. Forchhammer, Mads Guéguen, Maya Nabe‐Nielsen, Jacob Sabatini, Francesco Maria 2021 http://dx.doi.org/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jvs.13009 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Journal of Vegetation Science volume 32, issue 2 ISSN 1100-9233 1654-1103 journal-article 2021 crwiley https://doi.org/10.1111/jvs.13009 2024-06-04T06:43:41Z Abstract Questions Shrub vegetation has been expanding across much of the rapidly changing Arctic. Yet, there is still uncertainty about the underlying drivers of shrub community composition. Here, we use extensive vegetation surveys and a trait‐based approach to answer the following questions: which abiotic and biotic factors explain abundance of shrub species and functional groups in the Arctic tundra, and can we interpret these relationships using plant traits related to resource acquisition? Location Nuup Kangerlua (Godthåbsfjord), western Greenland. Methods We tested the power of nine climatic, topographic and biotic variables to explain the abundances of nine shrub species using a Bayesian hierarchical modelling framework. Results We found highly variable responses among species and functional groups to both abiotic and biotic environmental variation. The overall most important abiotic explanatory variable was annual air temperature variability, which was highly correlated with winter minimum air temperature. Functional community composition and graminoid abundance were the most influential biotic factors. While we did not find systematic patterns between shrub abundances and abiotic variables with regard to resource acquisition traits, these traits did explain relationships between shrub abundances and biotic variables. Conclusions Shrub abundance responses to abiotic variables rarely aligned with expectations based on plants’ resource acquisition traits or functional groups. Our results, therefore, indicate that approaches exclusively based on resource acquisition traits might be limited in their ability to predict abundances of individual groups and species, particularly in response to complex abiotic environments. However, integrating community theory and functional trait concepts represents a promising pathway to better predict biotic interactions and ultimately responses of dominant shrub vegetation to rapid environmental changes across the arctic tundra biome. Article in Journal/Newspaper Arctic Godthåbsfjord Greenland Tundra Wiley Online Library Arctic Greenland Journal of Vegetation Science 32 2 |
institution |
Open Polar |
collection |
Wiley Online Library |
op_collection_id |
crwiley |
language |
English |
description |
Abstract Questions Shrub vegetation has been expanding across much of the rapidly changing Arctic. Yet, there is still uncertainty about the underlying drivers of shrub community composition. Here, we use extensive vegetation surveys and a trait‐based approach to answer the following questions: which abiotic and biotic factors explain abundance of shrub species and functional groups in the Arctic tundra, and can we interpret these relationships using plant traits related to resource acquisition? Location Nuup Kangerlua (Godthåbsfjord), western Greenland. Methods We tested the power of nine climatic, topographic and biotic variables to explain the abundances of nine shrub species using a Bayesian hierarchical modelling framework. Results We found highly variable responses among species and functional groups to both abiotic and biotic environmental variation. The overall most important abiotic explanatory variable was annual air temperature variability, which was highly correlated with winter minimum air temperature. Functional community composition and graminoid abundance were the most influential biotic factors. While we did not find systematic patterns between shrub abundances and abiotic variables with regard to resource acquisition traits, these traits did explain relationships between shrub abundances and biotic variables. Conclusions Shrub abundance responses to abiotic variables rarely aligned with expectations based on plants’ resource acquisition traits or functional groups. Our results, therefore, indicate that approaches exclusively based on resource acquisition traits might be limited in their ability to predict abundances of individual groups and species, particularly in response to complex abiotic environments. However, integrating community theory and functional trait concepts represents a promising pathway to better predict biotic interactions and ultimately responses of dominant shrub vegetation to rapid environmental changes across the arctic tundra biome. |
author2 |
Sabatini, Francesco Maria |
format |
Article in Journal/Newspaper |
author |
von Oppen, Jonathan Normand, Signe Bjorkman, Anne D. Blach‐Overgaard, Anne Assmann, Jakob J. Forchhammer, Mads Guéguen, Maya Nabe‐Nielsen, Jacob |
spellingShingle |
von Oppen, Jonathan Normand, Signe Bjorkman, Anne D. Blach‐Overgaard, Anne Assmann, Jakob J. Forchhammer, Mads Guéguen, Maya Nabe‐Nielsen, Jacob Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
author_facet |
von Oppen, Jonathan Normand, Signe Bjorkman, Anne D. Blach‐Overgaard, Anne Assmann, Jakob J. Forchhammer, Mads Guéguen, Maya Nabe‐Nielsen, Jacob |
author_sort |
von Oppen, Jonathan |
title |
Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
title_short |
Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
title_full |
Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
title_fullStr |
Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
title_full_unstemmed |
Annual air temperature variability and biotic interactions explain tundra shrub species abundance |
title_sort |
annual air temperature variability and biotic interactions explain tundra shrub species abundance |
publisher |
Wiley |
publishDate |
2021 |
url |
http://dx.doi.org/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvs.13009 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jvs.13009 |
geographic |
Arctic Greenland |
geographic_facet |
Arctic Greenland |
genre |
Arctic Godthåbsfjord Greenland Tundra |
genre_facet |
Arctic Godthåbsfjord Greenland Tundra |
op_source |
Journal of Vegetation Science volume 32, issue 2 ISSN 1100-9233 1654-1103 |
op_rights |
http://onlinelibrary.wiley.com/termsAndConditions#vor |
op_doi |
https://doi.org/10.1111/jvs.13009 |
container_title |
Journal of Vegetation Science |
container_volume |
32 |
container_issue |
2 |
_version_ |
1802640714980392960 |