Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)

Abstract Aim Cold‐adapted species had their largest distribution areas during glacial periods, whereas the subsequent interglacials led to retreats of these taxa into mountain ranges and more northern regions, but existing data are not sufficient for generalizing these range dynamics. To improve our...

Full description

Bibliographic Details
Published in:Journal of Biogeography
Main Authors: Ehl, Stefan, Ehl, Sarah, Kramp, Katja, Schmitt, Thomas
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2020
Subjects:
Online Access:http://dx.doi.org/10.1111/jbi.13988
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbi.13988
https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jbi.13988
id crwiley:10.1111/jbi.13988
record_format openpolar
spelling crwiley:10.1111/jbi.13988 2024-09-09T19:27:57+00:00 Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae) Ehl, Stefan Ehl, Sarah Kramp, Katja Schmitt, Thomas 2020 http://dx.doi.org/10.1111/jbi.13988 https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbi.13988 https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jbi.13988 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Journal of Biogeography volume 48, issue 1, page 134-146 ISSN 0305-0270 1365-2699 journal-article 2020 crwiley https://doi.org/10.1111/jbi.13988 2024-07-18T04:26:07Z Abstract Aim Cold‐adapted species had their largest distribution areas during glacial periods, whereas the subsequent interglacials led to retreats of these taxa into mountain ranges and more northern regions, but existing data are not sufficient for generalizing these range dynamics. To improve our knowledge of the different phylogeographical patterns existing for cold‐adapted species, we examined two closely related butterfly species of the genus Boloria with alpine disjunct and arctic–alpine distribution respectively. Location Europe: High mountain areas and Scandinavia. Taxa Boloria pales and B. napaea . Methods We sequenced two mitochondrial (COI, ND1/trRNA/16S region) and two nuclear genes (wingless and EF‐1α) for 182 B. pales specimens from 37 localities and 60 B. napaea specimens from 12 localities representing the whole distribution area of both species in Europe. We used existing and known calibration points to date the age of the relevant splits. Results While nuclear DNA showed no genetic structures, the mitochondrial loci revealed 91 haplotypes belonging to three well‐differenced genetic lineages: (a) all samples of B. napaea from the Alps and Scandinavia, (b) the samples of B. pales from the Alps, Carpathians, High Tatra, Pirin Mountains, Dinaric Alps in Montenegro and the Apennines and (c) all samples of B. pales from the Pyrenees. The time estimates for the splits between these three groups range from 1.3 to 0.84 million years ago (mya). The further within‐groups differentiations are not older than 0.32 mya, but reveal a subtle pattern among and within mountain ranges. Main conclusions Allopatry during the mid‐Pleistocene has led to differentiation into three major genetic groups, each of which possibly representing a separate species today. Especially within the today widespread mountain group (i.e. the pales sensu stricto group), repeated expansion out of their Alpine centre and a number of different peri‐Alpine glacial distribution areas have produced the subtle genetic structure observed over ... Article in Journal/Newspaper Arctic Wiley Online Library Arctic The Splits ENVELOPE(-123.670,-123.670,61.167,61.167) Journal of Biogeography 48 1 134 146
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Aim Cold‐adapted species had their largest distribution areas during glacial periods, whereas the subsequent interglacials led to retreats of these taxa into mountain ranges and more northern regions, but existing data are not sufficient for generalizing these range dynamics. To improve our knowledge of the different phylogeographical patterns existing for cold‐adapted species, we examined two closely related butterfly species of the genus Boloria with alpine disjunct and arctic–alpine distribution respectively. Location Europe: High mountain areas and Scandinavia. Taxa Boloria pales and B. napaea . Methods We sequenced two mitochondrial (COI, ND1/trRNA/16S region) and two nuclear genes (wingless and EF‐1α) for 182 B. pales specimens from 37 localities and 60 B. napaea specimens from 12 localities representing the whole distribution area of both species in Europe. We used existing and known calibration points to date the age of the relevant splits. Results While nuclear DNA showed no genetic structures, the mitochondrial loci revealed 91 haplotypes belonging to three well‐differenced genetic lineages: (a) all samples of B. napaea from the Alps and Scandinavia, (b) the samples of B. pales from the Alps, Carpathians, High Tatra, Pirin Mountains, Dinaric Alps in Montenegro and the Apennines and (c) all samples of B. pales from the Pyrenees. The time estimates for the splits between these three groups range from 1.3 to 0.84 million years ago (mya). The further within‐groups differentiations are not older than 0.32 mya, but reveal a subtle pattern among and within mountain ranges. Main conclusions Allopatry during the mid‐Pleistocene has led to differentiation into three major genetic groups, each of which possibly representing a separate species today. Especially within the today widespread mountain group (i.e. the pales sensu stricto group), repeated expansion out of their Alpine centre and a number of different peri‐Alpine glacial distribution areas have produced the subtle genetic structure observed over ...
format Article in Journal/Newspaper
author Ehl, Stefan
Ehl, Sarah
Kramp, Katja
Schmitt, Thomas
spellingShingle Ehl, Stefan
Ehl, Sarah
Kramp, Katja
Schmitt, Thomas
Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
author_facet Ehl, Stefan
Ehl, Sarah
Kramp, Katja
Schmitt, Thomas
author_sort Ehl, Stefan
title Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
title_short Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
title_full Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
title_fullStr Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
title_full_unstemmed Interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group Boloria pales / napaea (Nymphalidae)
title_sort interglacials are driving speciation and intraspecific differentiation in the cold‐adapted butterfly species group boloria pales / napaea (nymphalidae)
publisher Wiley
publishDate 2020
url http://dx.doi.org/10.1111/jbi.13988
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbi.13988
https://onlinelibrary.wiley.com/doi/full-xml/10.1111/jbi.13988
long_lat ENVELOPE(-123.670,-123.670,61.167,61.167)
geographic Arctic
The Splits
geographic_facet Arctic
The Splits
genre Arctic
genre_facet Arctic
op_source Journal of Biogeography
volume 48, issue 1, page 134-146
ISSN 0305-0270 1365-2699
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1111/jbi.13988
container_title Journal of Biogeography
container_volume 48
container_issue 1
container_start_page 134
op_container_end_page 146
_version_ 1809897264259268608