Impact‐induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis

Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two se...

Full description

Bibliographic Details
Published in:Meteoritics & Planetary Science
Main Authors: OSINSKI, Gordon R., SPRAY, John G., LEE, Pascal
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2001
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1945-5100.2001.tb01910.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1945-5100.2001.tb01910.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1945-5100.2001.tb01910.x
Description
Summary:Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact‐generated concentric fault systems. The intra‐breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault‐related hydrothermal alteration occurs in 1–7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz‐carbonate breccia showing pronounced Fe‐hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 °C), with the precipitation of quartz (vapor phase dominated); (2) Main Stage (200‐100 °C), with the development of a two‐phase (vapor plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation; and (3) Late Stage (<100 °C), with selenite and fibroferrite development through liquid phase‐dominated precipitation. We estimate that it took several tens of thousands of years to cool below 50 °C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.