Light rare earth element enrichments in ureilites: A detailed ion microprobe study

Abstract— This paper explores the possible origin of the light rare earth element (LREE) enrichments observed in some ureilites, a question that has both petrogenetic and chronologic implications for this group of achondritic meteorites. Rare earth element and other selected elemental abundances wer...

Full description

Bibliographic Details
Published in:Meteoritics & Planetary Science
Main Authors: GUAN, Yunbin, CROZAZ, Ghislaine
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2000
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1945-5100.2000.tb01980.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1945-5100.2000.tb01980.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1945-5100.2000.tb01980.x
Description
Summary:Abstract— This paper explores the possible origin of the light rare earth element (LREE) enrichments observed in some ureilites, a question that has both petrogenetic and chronologic implications for this group of achondritic meteorites. Rare earth element and other selected elemental abundances were measured in situ in 14 thin sections representing 11 different ureilites. The spatial microdistributions of REEs in C‐rich matrix areas of the three ureilites with the most striking V‐shaped whole‐rock REE patterns (Kenna, Goalpara, and Novo Urei) were investigated using the ion imaging capability of the ion microprobe. All olivines and clinopyroxenes measured have LREE‐depleted patterns with little variation in REE abundances, despite large differences in their major element compositions from ureilite to ureilite. Furthermore, we searched for but did not find any minor mineral phases that carry LREEs. The only exception is one Ti‐rich area (∼20μm) in Lewis Cliff (LEW) 85400 with a major element composition similar to that of titanite; REE abundances in this area are high, ranging from La ≅ 400 × CI to Lu ≅ 40 × CI. In contrast, all ion microprobe analyses of C‐rich matrix in Kenna, Goalpara, and Novo Urei revealed large LREE enrichments. In addition, C‐rich matrix areas in the three polymict ureilites, Elephant Moraine (EET) 83309, EET 87720, and North Haig, which have less pronounced V‐shaped whole‐rock REE patterns, show smaller but distinct LREE‐enrichments. The C‐rich matrix in Antarctic ureilites tends to have much lower LREE concentrations than the matrix in non‐Antarctic ureilites. There is no obvious association of the LREEs with other major or minor elements in the C‐rich areas. Ion images further show that the LREE enrichments are homogeneously distributed on a microscale in most C‐rich matrix areas of Kenna, Goalpara, and Novo Urei. These observations suggest that the LREEs in ureilites most probably are absorbed on the surface of fine‐grained amorphous graphite in the C‐rich matrix. It is unlikely that ...