Tepsankumpu revisited — pollen evidence of stable Eemian climates in Finnish Lapland

Several till‐covered organic deposits, principally lake gyttja, in Finnish Lapland have been correlated with the last (i.e. Eemian) interglacial on the basis of their lithostratigraphic position and pollen stratigraphy. Most of the sequences are short, but together with three longer sequences from F...

Full description

Bibliographic Details
Published in:Boreas
Main Authors: SAARNISTO, MATTI, ERIKSSON, BRTTA, HIRVAS, HEIKKI
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 1999
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1502-3885.1999.tb00204.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1502-3885.1999.tb00204.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1502-3885.1999.tb00204.x
Description
Summary:Several till‐covered organic deposits, principally lake gyttja, in Finnish Lapland have been correlated with the last (i.e. Eemian) interglacial on the basis of their lithostratigraphic position and pollen stratigraphy. Most of the sequences are short, but together with three longer sequences from Finnish Lapland and one from Swedish Lapland (Leveäniemi) they provide a complete picture of Eemian vegetational and climatic development. The Tepsankumpu site was revisited, and the till‐covered thick freshwater gyttja deposit was studied in detail for pollen in order to search for signals of rapid climatic fluctuations postulated for the earlier part of the Eemian on the basis of Greenland ice core studies. The Eemian pollen stratigraphy in Finnish Lapland closely resembles the Holocene pollen stratigraphy of the area. The abundance of spruce and alder pollen suggests, however, more northerly limits for forest vegetation zones during the Eemian than during the Holocene. Oak also grew closer to Lapland, indicating a wanner climate than during the Holocene climatic optimum. The Tepsankumpu pollen stratigraphy indicates climatic stability over the entire time‐span it covers, i.e. the major part of the interglacial. This finding is in conflict with results from Greenland GRIP ice core studies and interpretations of some Continental European Eemian pollen diagrams.