The role of wave reworking on the architecture of storm sandstone facies, Bell Island Group (Lower Ordovician), eastern Newfoundland

ABSTRACT Stacked shallow marine cycles in the Lower Ordovician, Bell Island Group, of Bell Island, Newfoundland, show upward thickening and upward coarsening sequences which were deposited on a storm‐affected shelf. In the Beach Formation each cycle has a facies sequence comprised, from base to top,...

Full description

Bibliographic Details
Published in:Sedimentology
Main Authors: Brenchley, P. J., PICKERILL, R. K., Stromberg, S. G.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 1993
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1365-3091.1993.tb01341.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1365-3091.1993.tb01341.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3091.1993.tb01341.x
Description
Summary:ABSTRACT Stacked shallow marine cycles in the Lower Ordovician, Bell Island Group, of Bell Island, Newfoundland, show upward thickening and upward coarsening sequences which were deposited on a storm‐affected shelf. In the Beach Formation each cycle has a facies sequence comprised, from base to top, of dark grey mudstones, light grey mudstones, tabular sandstones and mudstones, lenticular sandstones and mudstones, and thick bedded lenticular sandstones, reflecting a progressive increase of wave orbital velocities at the sediment surface. The mudstones and tabular sandstones reflect an environment in which the sea floor lay in the lower part of the wave orbital velocity field and in which tempestites were deposited as widespread sheets from weak combined flow currents. The lenticular sandstones in the succeeding facies are wave reworked sands, commonly lying in erosional hollows and having erosional tops and internal hummocky cross‐stratification. Planar lamination is relatively uncommon and sole marks are mainly absent. In this facies oscillatory currents were dominant and accumulated sand in patches generally 10–30 m in diameter. The facies formed on the inner shelf where the oscillatory currents generated by storm waves had powerful erosional effects and also determined the depositional bedforms. Mud partings and second‐order set boundaries within sandstone beds are believed to separate the products of individual storms so that many lenticular sandstone beds represent the amalgamation of several event beds. This interpretation has important implications for attempts to estimate event frequency by counting sandstone beds within a sequence and for estimates of sand budgets during storm events. The thick bedded lenticular facies appears to have been formed by erosion of the mud beds between the lenticular sands, leading to nearly complete amalgamation of several lenticular sand bodies except for residual mud partings. In the overlying Redmans Formation the process of amalgamation progressed even further so that ...