Tectonic control on sedimentary evolution of three North Atlantic borderland Mesozoic basins1

Abstract Multiple episodes of extensional tectonism dominated the formation of Mesozoic fault‐bounded basins on the Grand Banks of Newfoundland, the Irish Continental Shelf and the central North Sea. A range of structural and stratigraphic responses in the Jeanne d'Arc, Porcupine and Moray Firt...

Full description

Bibliographic Details
Published in:Basin Research
Main Authors: Sinclair, I. K., Shannon, P. M., Williams, B. P. J., Harker, S. D., Mooren, J. G.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 1994
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1365-2117.1994.tb00085.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1365-2117.1994.tb00085.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2117.1994.tb00085.x
Description
Summary:Abstract Multiple episodes of extensional tectonism dominated the formation of Mesozoic fault‐bounded basins on the Grand Banks of Newfoundland, the Irish Continental Shelf and the central North Sea. A range of structural and stratigraphic responses in the Jeanne d'Arc, Porcupine and Moray Firth basins support widespread synchronous tectonic controls on sedimentation during one of these episodes, the Late Cimmerian. Rifting was preceded by a phase of related tectonism during which subsidence rates began to vary across broad areas but without significant fault block rotation. This Late Cimmerian ‘onset warp’ pattern of subsidence is considered to have been essential in the establishment of restricted anoxic basins from latest Oxfordian through Kimmeridgian ( sensu gallico ) time and the development of one prolific layer of organic‐rich source rocks. The most prominent and widely recognized structural/lithostratigraphic response to Late Cimmerian rifting was the deposition of sediment wedges. Tithonian to early Valanginian strata generally thicken‐ into northerly trending faults in the Jeanne d'Arc and Porcupine basins, indicating that extensional stress was orientated WNW‐ESE across a very broad area. The misalignment of this regional Late Cimmerian extensional stress with local inherited structural fabric may be responsible for transpressional uplift of individual fault blocks in the Outer Moray Firth basin. Sedimentological responses to Late Cimmerian rifting were varied, though a common lithofacies stacking pattern is recognized. Variably thick conglomerates and/or sandstones were widely deposited at the start of rift deformation, while palaeoenvironments ranged from alluvial and braid plain to submarine fan even within individual basins. The relatively coarse basal sediments fine upwards into a second layer of commonly organic‐rich shales and mark The widest variations in palaeoenvironments and sediment thicknesses occurred during the last phase of Late Cimmerian rift tectonism, though all three basins show ...