Linking marine and freshwater growth in western Alaska Chinook salmon Oncorhynchus tshawytscha

The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First‐year marine growth in individ...

Full description

Bibliographic Details
Published in:Journal of Fish Biology
Main Authors: Ruggerone, G. T., Nielsen, J. L., Agler, B. A.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2009
Subjects:
Online Access:http://dx.doi.org/10.1111/j.1095-8649.2009.02364.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fj.1095-8649.2009.02364.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1095-8649.2009.02364.x
Description
Summary:The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First‐year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year‐class growth during the previous year was relatively low. Length (eye to tail fork, L ETF ) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.