Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival

Abstract Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across gene...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Neylan, Isabelle P., Swezey, Daniel S., Boles, Sara E., Gross, Jackson A., Sih, Andrew, Stachowicz, John J.
Other Authors: California Sea Grant, University of California, San Diego, National Science Foundation, U.S. Navy
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2023
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.17048
https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.17048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.17048
id crwiley:10.1111/gcb.17048
record_format openpolar
spelling crwiley:10.1111/gcb.17048 2024-09-09T20:01:26+00:00 Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival Neylan, Isabelle P. Swezey, Daniel S. Boles, Sara E. Gross, Jackson A. Sih, Andrew Stachowicz, John J. California Sea Grant, University of California, San Diego National Science Foundation U.S. Navy 2023 http://dx.doi.org/10.1111/gcb.17048 https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.17048 https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.17048 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor Global Change Biology volume 30, issue 1 ISSN 1354-1013 1365-2486 journal-article 2023 crwiley https://doi.org/10.1111/gcb.17048 2024-08-01T04:19:48Z Abstract Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone ( Haliotis rufescens ) using a multi‐generational split‐brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO 2 (1180 μatm; simulating OA) or low pCO 2 (450 μatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO 2 treatments for 11 months and measuring growth and reproductive potential. Early‐life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re‐exposed to OA as adults. Adult but not early‐life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO 2 treatments for the first 3 months of life in a fully factorial, split‐brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life‐history windows can mitigate these effects. Article in Journal/Newspaper Ocean acidification Wiley Online Library Global Change Biology 30 1
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone ( Haliotis rufescens ) using a multi‐generational split‐brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO 2 (1180 μatm; simulating OA) or low pCO 2 (450 μatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO 2 treatments for 11 months and measuring growth and reproductive potential. Early‐life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re‐exposed to OA as adults. Adult but not early‐life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO 2 treatments for the first 3 months of life in a fully factorial, split‐brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life‐history windows can mitigate these effects.
author2 California Sea Grant, University of California, San Diego
National Science Foundation
U.S. Navy
format Article in Journal/Newspaper
author Neylan, Isabelle P.
Swezey, Daniel S.
Boles, Sara E.
Gross, Jackson A.
Sih, Andrew
Stachowicz, John J.
spellingShingle Neylan, Isabelle P.
Swezey, Daniel S.
Boles, Sara E.
Gross, Jackson A.
Sih, Andrew
Stachowicz, John J.
Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
author_facet Neylan, Isabelle P.
Swezey, Daniel S.
Boles, Sara E.
Gross, Jackson A.
Sih, Andrew
Stachowicz, John J.
author_sort Neylan, Isabelle P.
title Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
title_short Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
title_full Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
title_fullStr Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
title_full_unstemmed Within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( Haliotis rufescens) growth and survival
title_sort within‐ and transgenerational stress legacy effects of ocean acidification on red abalone ( haliotis rufescens) growth and survival
publisher Wiley
publishDate 2023
url http://dx.doi.org/10.1111/gcb.17048
https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.17048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.17048
genre Ocean acidification
genre_facet Ocean acidification
op_source Global Change Biology
volume 30, issue 1
ISSN 1354-1013 1365-2486
op_rights http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1111/gcb.17048
container_title Global Change Biology
container_volume 30
container_issue 1
_version_ 1809933254885638144