Climate change enhances primary production in the western Antarctic Peninsula

Abstract Intense regional warming was observed in the western Antarctic Peninsula ( WAP ) over the last 50 years. Here, we investigate the impact of climate change on primary production ( PP ) in this highly productive region. This study is based on temporal data series of ozone thickness (1972–2010...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Moreau, Sébastien, Mostajir, Behzad, Bélanger, Simon, Schloss, Irene R., Vancoppenolle, Martin, Demers, Serge, Ferreyra, Gustavo A.
Other Authors: NSERC Special Research Opportunity Program, NSERC Discovery, Belgian Science Federal Policy Office (BIGSOUTH project), BEPSII (Biogeochemical Exchange Processes at the Sea Ice Interfaces, SCOR Working Group 140), Office of Polar Programs, NSF
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2015
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.12878
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12878
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12878
id crwiley:10.1111/gcb.12878
record_format openpolar
spelling crwiley:10.1111/gcb.12878 2024-09-30T14:25:54+00:00 Climate change enhances primary production in the western Antarctic Peninsula Moreau, Sébastien Mostajir, Behzad Bélanger, Simon Schloss, Irene R. Vancoppenolle, Martin Demers, Serge Ferreyra, Gustavo A. NSERC Special Research Opportunity Program NSERC Discovery Belgian Science Federal Policy Office (BIGSOUTH project) BEPSII (Biogeochemical Exchange Processes at the Sea Ice Interfaces, SCOR Working Group 140) Office of Polar Programs, NSF 2015 http://dx.doi.org/10.1111/gcb.12878 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12878 https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12878 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Global Change Biology volume 21, issue 6, page 2191-2205 ISSN 1354-1013 1365-2486 journal-article 2015 crwiley https://doi.org/10.1111/gcb.12878 2024-09-05T05:09:27Z Abstract Intense regional warming was observed in the western Antarctic Peninsula ( WAP ) over the last 50 years. Here, we investigate the impact of climate change on primary production ( PP ) in this highly productive region. This study is based on temporal data series of ozone thickness (1972–2010), sea ice concentration (1978–2010), sea‐surface temperature (1990–2010), incident irradiance (1988–2010) and satellite‐derived chlorophyll a concentration (Chl‐a, 1997–2010) for the coastal WAP . In addition, we apply a photosynthesis/photoinhibition spectral model to satellite‐derived data (1997–2010) to compute PP and examine the separate impacts of environmental forcings. Since 1978, sea ice retreat has been occurring earlier in the season (in March in 1978 and in late October during the 2000s) while the ozone hole is present in early spring (i.e. August to November) since the early 1990s, increasing the intensity of ultraviolet‐B radiation ( UVBR , 280–320 nm). The WAP waters have also warmed over 1990–2010. The modelled PP rates are in the lower range of previously reported PP rates in the WAP . The annual open water PP in the study area increased from 1997 to 2010 (from 0.73 to 1.03 Tg C yr −1 ) concomitantly with the increase in the production season length. The coincidence between the earlier sea ice retreat and the presence of the ozone hole increased the exposure to incoming radiation ( UVBR , UVAR and PAR ) and, thus, increased photoinhibition during austral spring (September to November) in the study area (from 0.014 to 0.025 Tg C yr −1 ). This increase in photoinhibition was minor compared to the overall increase in PP , however. Climate change hence had an overall positive impact on PP in the WAP waters. Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Sea ice Wiley Online Library Antarctic Antarctic Peninsula Austral Global Change Biology 21 6 2191 2205
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Intense regional warming was observed in the western Antarctic Peninsula ( WAP ) over the last 50 years. Here, we investigate the impact of climate change on primary production ( PP ) in this highly productive region. This study is based on temporal data series of ozone thickness (1972–2010), sea ice concentration (1978–2010), sea‐surface temperature (1990–2010), incident irradiance (1988–2010) and satellite‐derived chlorophyll a concentration (Chl‐a, 1997–2010) for the coastal WAP . In addition, we apply a photosynthesis/photoinhibition spectral model to satellite‐derived data (1997–2010) to compute PP and examine the separate impacts of environmental forcings. Since 1978, sea ice retreat has been occurring earlier in the season (in March in 1978 and in late October during the 2000s) while the ozone hole is present in early spring (i.e. August to November) since the early 1990s, increasing the intensity of ultraviolet‐B radiation ( UVBR , 280–320 nm). The WAP waters have also warmed over 1990–2010. The modelled PP rates are in the lower range of previously reported PP rates in the WAP . The annual open water PP in the study area increased from 1997 to 2010 (from 0.73 to 1.03 Tg C yr −1 ) concomitantly with the increase in the production season length. The coincidence between the earlier sea ice retreat and the presence of the ozone hole increased the exposure to incoming radiation ( UVBR , UVAR and PAR ) and, thus, increased photoinhibition during austral spring (September to November) in the study area (from 0.014 to 0.025 Tg C yr −1 ). This increase in photoinhibition was minor compared to the overall increase in PP , however. Climate change hence had an overall positive impact on PP in the WAP waters.
author2 NSERC Special Research Opportunity Program
NSERC Discovery
Belgian Science Federal Policy Office (BIGSOUTH project)
BEPSII (Biogeochemical Exchange Processes at the Sea Ice Interfaces, SCOR Working Group 140)
Office of Polar Programs, NSF
format Article in Journal/Newspaper
author Moreau, Sébastien
Mostajir, Behzad
Bélanger, Simon
Schloss, Irene R.
Vancoppenolle, Martin
Demers, Serge
Ferreyra, Gustavo A.
spellingShingle Moreau, Sébastien
Mostajir, Behzad
Bélanger, Simon
Schloss, Irene R.
Vancoppenolle, Martin
Demers, Serge
Ferreyra, Gustavo A.
Climate change enhances primary production in the western Antarctic Peninsula
author_facet Moreau, Sébastien
Mostajir, Behzad
Bélanger, Simon
Schloss, Irene R.
Vancoppenolle, Martin
Demers, Serge
Ferreyra, Gustavo A.
author_sort Moreau, Sébastien
title Climate change enhances primary production in the western Antarctic Peninsula
title_short Climate change enhances primary production in the western Antarctic Peninsula
title_full Climate change enhances primary production in the western Antarctic Peninsula
title_fullStr Climate change enhances primary production in the western Antarctic Peninsula
title_full_unstemmed Climate change enhances primary production in the western Antarctic Peninsula
title_sort climate change enhances primary production in the western antarctic peninsula
publisher Wiley
publishDate 2015
url http://dx.doi.org/10.1111/gcb.12878
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12878
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12878
geographic Antarctic
Antarctic Peninsula
Austral
geographic_facet Antarctic
Antarctic Peninsula
Austral
genre Antarc*
Antarctic
Antarctic Peninsula
Sea ice
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Sea ice
op_source Global Change Biology
volume 21, issue 6, page 2191-2205
ISSN 1354-1013 1365-2486
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1111/gcb.12878
container_title Global Change Biology
container_volume 21
container_issue 6
container_start_page 2191
op_container_end_page 2205
_version_ 1811646491666677760