Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus

Abstract A rapidly growing body of literature documents the potential negative effects of CO 2 ‐driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Kelly, Morgan W., Padilla‐Gamiño, Jacqueline L., Hofmann, Gretchen E.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2013
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.12251
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12251
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12251
id crwiley:10.1111/gcb.12251
record_format openpolar
spelling crwiley:10.1111/gcb.12251 2024-10-13T14:10:00+00:00 Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus Kelly, Morgan W. Padilla‐Gamiño, Jacqueline L. Hofmann, Gretchen E. 2013 http://dx.doi.org/10.1111/gcb.12251 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12251 https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12251 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Global Change Biology volume 19, issue 8, page 2536-2546 ISSN 1354-1013 1365-2486 journal-article 2013 crwiley https://doi.org/10.1111/gcb.12251 2024-09-17T04:48:50Z Abstract A rapidly growing body of literature documents the potential negative effects of CO 2 ‐driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species. Here, we measure the capacity of the ecologically important purple sea urchin Strongylocentrotus purpuratus to adapt to OA, using a breeding experiment to estimate additive genetic variance for larval size (an important component of fitness) under future high‐ pCO 2 /low‐ pH conditions. Although larvae reared under future conditions were smaller than those reared under present‐day conditions, we show that there is also abundant genetic variation for body size under elevated pCO 2 , indicating that this trait can evolve. The observed heritability of size was 0.40 ± 0.32 (95% CI) under low pCO 2 , and 0.50 ± 0.30 under high‐ pCO 2 conditions. Accounting for the observed genetic variation in models of future larval size and demographic rates substantially alters projections of performance for this species in the future ocean. Importantly, our model shows that after incorporating the effects of adaptation, the OA‐driven decrease in population growth rate is up to 50% smaller, than that predicted by the ‘no‐adaptation’ scenario. Adults used in the experiment were collected from two sites on the coast of the Northeast Pacific that are characterized by different pH regimes, as measured by autonomous sensors. Comparing results between sites, we also found subtle differences in larval size under high‐ pCO 2 rearing conditions, consistent with local adaptation to carbonate chemistry in the field. These results suggest that spatially varying selection may help to maintain genetic variation necessary for adaptation to future OA. Article in Journal/Newspaper Ocean acidification Wiley Online Library Pacific Global Change Biology 19 8 2536 2546
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract A rapidly growing body of literature documents the potential negative effects of CO 2 ‐driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species. Here, we measure the capacity of the ecologically important purple sea urchin Strongylocentrotus purpuratus to adapt to OA, using a breeding experiment to estimate additive genetic variance for larval size (an important component of fitness) under future high‐ pCO 2 /low‐ pH conditions. Although larvae reared under future conditions were smaller than those reared under present‐day conditions, we show that there is also abundant genetic variation for body size under elevated pCO 2 , indicating that this trait can evolve. The observed heritability of size was 0.40 ± 0.32 (95% CI) under low pCO 2 , and 0.50 ± 0.30 under high‐ pCO 2 conditions. Accounting for the observed genetic variation in models of future larval size and demographic rates substantially alters projections of performance for this species in the future ocean. Importantly, our model shows that after incorporating the effects of adaptation, the OA‐driven decrease in population growth rate is up to 50% smaller, than that predicted by the ‘no‐adaptation’ scenario. Adults used in the experiment were collected from two sites on the coast of the Northeast Pacific that are characterized by different pH regimes, as measured by autonomous sensors. Comparing results between sites, we also found subtle differences in larval size under high‐ pCO 2 rearing conditions, consistent with local adaptation to carbonate chemistry in the field. These results suggest that spatially varying selection may help to maintain genetic variation necessary for adaptation to future OA.
format Article in Journal/Newspaper
author Kelly, Morgan W.
Padilla‐Gamiño, Jacqueline L.
Hofmann, Gretchen E.
spellingShingle Kelly, Morgan W.
Padilla‐Gamiño, Jacqueline L.
Hofmann, Gretchen E.
Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
author_facet Kelly, Morgan W.
Padilla‐Gamiño, Jacqueline L.
Hofmann, Gretchen E.
author_sort Kelly, Morgan W.
title Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
title_short Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
title_full Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
title_fullStr Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
title_full_unstemmed Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus
title_sort natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin strongylocentrotus purpuratus
publisher Wiley
publishDate 2013
url http://dx.doi.org/10.1111/gcb.12251
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12251
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12251
geographic Pacific
geographic_facet Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_source Global Change Biology
volume 19, issue 8, page 2536-2546
ISSN 1354-1013 1365-2486
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1111/gcb.12251
container_title Global Change Biology
container_volume 19
container_issue 8
container_start_page 2536
op_container_end_page 2546
_version_ 1812817127082557440