Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C

Abstract Ecosystem respiration ( R eco ) is one of the largest terrestrial carbon ( C ) fluxes. The effect of climate change on R eco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especiall...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Hicks Pries, Caitlin E., Schuur, Edward A. G., Crummer, Kathryn G.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2012
Subjects:
Online Access:http://dx.doi.org/10.1111/gcb.12058
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12058
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12058
id crwiley:10.1111/gcb.12058
record_format openpolar
spelling crwiley:10.1111/gcb.12058 2024-10-13T14:10:12+00:00 Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C Hicks Pries, Caitlin E. Schuur, Edward A. G. Crummer, Kathryn G. 2012 http://dx.doi.org/10.1111/gcb.12058 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12058 https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12058 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Global Change Biology volume 19, issue 2, page 649-661 ISSN 1354-1013 1365-2486 journal-article 2012 crwiley https://doi.org/10.1111/gcb.12058 2024-09-23T04:37:35Z Abstract Ecosystem respiration ( R eco ) is one of the largest terrestrial carbon ( C ) fluxes. The effect of climate change on R eco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned R eco using Δ 14 C and δ 13 C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ 14 C and δ 13 C of sources using incubations and the Δ 14 C and δ 13 C of R eco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to R eco . Autotrophic respiration ranged from 40 to 70% of R eco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of R eco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change. Article in Journal/Newspaper permafrost Tundra Wiley Online Library Global Change Biology 19 2 649 661
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Ecosystem respiration ( R eco ) is one of the largest terrestrial carbon ( C ) fluxes. The effect of climate change on R eco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned R eco using Δ 14 C and δ 13 C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ 14 C and δ 13 C of sources using incubations and the Δ 14 C and δ 13 C of R eco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to R eco . Autotrophic respiration ranged from 40 to 70% of R eco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of R eco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.
format Article in Journal/Newspaper
author Hicks Pries, Caitlin E.
Schuur, Edward A. G.
Crummer, Kathryn G.
spellingShingle Hicks Pries, Caitlin E.
Schuur, Edward A. G.
Crummer, Kathryn G.
Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
author_facet Hicks Pries, Caitlin E.
Schuur, Edward A. G.
Crummer, Kathryn G.
author_sort Hicks Pries, Caitlin E.
title Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
title_short Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
title_full Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
title_fullStr Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
title_full_unstemmed Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
title_sort thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ 13 c and ∆ 14 c
publisher Wiley
publishDate 2012
url http://dx.doi.org/10.1111/gcb.12058
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fgcb.12058
https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12058
genre permafrost
Tundra
genre_facet permafrost
Tundra
op_source Global Change Biology
volume 19, issue 2, page 649-661
ISSN 1354-1013 1365-2486
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1111/gcb.12058
container_title Global Change Biology
container_volume 19
container_issue 2
container_start_page 649
op_container_end_page 661
_version_ 1812817368654544896