Small but connected islands can maintain populations and genetic diversity under climate change

In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system‐specific conditions that maintain the demographic and genetic viability of sp...

Full description

Bibliographic Details
Published in:Ecography
Main Authors: Smith, Matthew M., Pauli, Jonathan N.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2024
Subjects:
Online Access:http://dx.doi.org/10.1111/ecog.07119
id crwiley:10.1111/ecog.07119
record_format openpolar
spelling crwiley:10.1111/ecog.07119 2024-09-15T17:38:39+00:00 Small but connected islands can maintain populations and genetic diversity under climate change Smith, Matthew M. Pauli, Jonathan N. 2024 http://dx.doi.org/10.1111/ecog.07119 en eng Wiley http://creativecommons.org/licenses/by/3.0/ Ecography volume 2024, issue 7 ISSN 0906-7590 1600-0587 journal-article 2024 crwiley https://doi.org/10.1111/ecog.07119 2024-07-04T04:26:57Z In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system‐specific conditions that maintain the demographic and genetic viability of species of conservation concern is essential. Connectivity plays a critical role in the persistence of populations. Islands have been model systems to understand connectivity and metapopulation processes and have emerged as particularly favorable targets for conservation. While islands can be isolated from mainland disturbances, it is unknown what degree of isolation is necessary to avoid unfavorable changes but remain sufficiently connected to maintain population viability. To test this question, we explored connectivity within the Apostle Islands, an archipelago of 22 islands within Lake Superior, by comparing historical and contemporary trends in ice bridge connectivity and by simulating the effect of reduced connectivity within this system. We developed a demographically informed individual‐based model to explicitly test the role of connectivity to influence the persistence and genetic diversity of American marten Martes americana , a forest carnivore at risk across its southern range boundary. We found that genetic diversity was resilient to moderate changes in ice cover, but a complete loss of connectivity resulted in rapid genetic erosion. Despite genetic erosion, populations persisted as long as nominal connectivity occurred between islands. Our work suggests that connectivity will decline, but martens would be resilient to moderate changes and, in the short term, the Apostle Islands can act as a refuge along this species' southern range boundary. Identifying thresholds in connectivity that maintain populations but allow for isolation from disturbance will be necessary to identify suitable areas for species conservation across space and time. Article in Journal/Newspaper American marten Martes americana Wiley Online Library Ecography 2024 7
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system‐specific conditions that maintain the demographic and genetic viability of species of conservation concern is essential. Connectivity plays a critical role in the persistence of populations. Islands have been model systems to understand connectivity and metapopulation processes and have emerged as particularly favorable targets for conservation. While islands can be isolated from mainland disturbances, it is unknown what degree of isolation is necessary to avoid unfavorable changes but remain sufficiently connected to maintain population viability. To test this question, we explored connectivity within the Apostle Islands, an archipelago of 22 islands within Lake Superior, by comparing historical and contemporary trends in ice bridge connectivity and by simulating the effect of reduced connectivity within this system. We developed a demographically informed individual‐based model to explicitly test the role of connectivity to influence the persistence and genetic diversity of American marten Martes americana , a forest carnivore at risk across its southern range boundary. We found that genetic diversity was resilient to moderate changes in ice cover, but a complete loss of connectivity resulted in rapid genetic erosion. Despite genetic erosion, populations persisted as long as nominal connectivity occurred between islands. Our work suggests that connectivity will decline, but martens would be resilient to moderate changes and, in the short term, the Apostle Islands can act as a refuge along this species' southern range boundary. Identifying thresholds in connectivity that maintain populations but allow for isolation from disturbance will be necessary to identify suitable areas for species conservation across space and time.
format Article in Journal/Newspaper
author Smith, Matthew M.
Pauli, Jonathan N.
spellingShingle Smith, Matthew M.
Pauli, Jonathan N.
Small but connected islands can maintain populations and genetic diversity under climate change
author_facet Smith, Matthew M.
Pauli, Jonathan N.
author_sort Smith, Matthew M.
title Small but connected islands can maintain populations and genetic diversity under climate change
title_short Small but connected islands can maintain populations and genetic diversity under climate change
title_full Small but connected islands can maintain populations and genetic diversity under climate change
title_fullStr Small but connected islands can maintain populations and genetic diversity under climate change
title_full_unstemmed Small but connected islands can maintain populations and genetic diversity under climate change
title_sort small but connected islands can maintain populations and genetic diversity under climate change
publisher Wiley
publishDate 2024
url http://dx.doi.org/10.1111/ecog.07119
genre American marten
Martes americana
genre_facet American marten
Martes americana
op_source Ecography
volume 2024, issue 7
ISSN 0906-7590 1600-0587
op_rights http://creativecommons.org/licenses/by/3.0/
op_doi https://doi.org/10.1111/ecog.07119
container_title Ecography
container_volume 2024
container_issue 7
_version_ 1810474604337037312