Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy

Physical inactivity generates muscle atrophy in most mammalian species. In contrast, hibernating ground squirrels demonstrate limited muscle loss over the prolonged periods of immobility during winter suggesting that they have adaptive mechanisms to reduce disuse muscle atrophy. To identify transcri...

Full description

Bibliographic Details
Published in:The FASEB Journal
Main Authors: Fedorov, Vadim B., Barnes, Brian M., Goropashnaya, Anna V.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2020
Subjects:
Online Access:http://dx.doi.org/10.1096/fasebj.2020.34.s1.08897
id crwiley:10.1096/fasebj.2020.34.s1.08897
record_format openpolar
spelling crwiley:10.1096/fasebj.2020.34.s1.08897 2024-06-02T08:01:54+00:00 Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy Fedorov, Vadim B. Barnes, Brian M. Goropashnaya, Anna V. 2020 http://dx.doi.org/10.1096/fasebj.2020.34.s1.08897 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor The FASEB Journal volume 34, issue S1, page 1-1 ISSN 0892-6638 1530-6860 journal-article 2020 crwiley https://doi.org/10.1096/fasebj.2020.34.s1.08897 2024-05-03T12:07:40Z Physical inactivity generates muscle atrophy in most mammalian species. In contrast, hibernating ground squirrels demonstrate limited muscle loss over the prolonged periods of immobility during winter suggesting that they have adaptive mechanisms to reduce disuse muscle atrophy. To identify transcriptional programs that underlie molecular mechanisms attenuating muscle loss, we conducted a large‐scale gene expression profiling in quadriceps muscle comparing hibernating ((late in a torpor and during torpor re‐entry after arousal) and summer active arctic ground squirrels using the next generation sequencing of transcriptome. Gene set enrichment analysis showed a coordinated up‐regulation of genes involved in all stages of protein biosynthesis and ribosome during hibernation at late torpor and entering torpor after arousal that suggests induction of translation in interbout arousals. Elevated proportion of down‐regulated gene involved in apoptosis as well as significant underexpression of atrogenes, upstream regulators (FOXO1, FOXO3, NFKB1A) and key components of the ubiquitin proteasome pathway (FBXO32, TRIM63, CBLB), and overexpression of PPARGC1B inhibiting proteolysis imply suppression of protein degradation in muscle during arousals. Coordinated underexpression of multiple genes involved in muscle contraction and up‐regulation of genes in the fatty acid β oxidation pathway are consistent with low muscle loading and major role of lipids as fuel in muscle metabolism during hibernation. The induction of protein biosynthesis and decrease in protein catabolism likely contribute to the attenuation of disuse muscle atrophy through prolonged periods of immobility of hibernation. Support or Funding Information NIH [R21AR064995]; NIH Alaska INBRE [P20GM103395]; NIH COBRE [P20GM130443] Article in Journal/Newspaper Arctic Urocitellus parryii Alaska Wiley Online Library Arctic The FASEB Journal 34 S1 1 1
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Physical inactivity generates muscle atrophy in most mammalian species. In contrast, hibernating ground squirrels demonstrate limited muscle loss over the prolonged periods of immobility during winter suggesting that they have adaptive mechanisms to reduce disuse muscle atrophy. To identify transcriptional programs that underlie molecular mechanisms attenuating muscle loss, we conducted a large‐scale gene expression profiling in quadriceps muscle comparing hibernating ((late in a torpor and during torpor re‐entry after arousal) and summer active arctic ground squirrels using the next generation sequencing of transcriptome. Gene set enrichment analysis showed a coordinated up‐regulation of genes involved in all stages of protein biosynthesis and ribosome during hibernation at late torpor and entering torpor after arousal that suggests induction of translation in interbout arousals. Elevated proportion of down‐regulated gene involved in apoptosis as well as significant underexpression of atrogenes, upstream regulators (FOXO1, FOXO3, NFKB1A) and key components of the ubiquitin proteasome pathway (FBXO32, TRIM63, CBLB), and overexpression of PPARGC1B inhibiting proteolysis imply suppression of protein degradation in muscle during arousals. Coordinated underexpression of multiple genes involved in muscle contraction and up‐regulation of genes in the fatty acid β oxidation pathway are consistent with low muscle loading and major role of lipids as fuel in muscle metabolism during hibernation. The induction of protein biosynthesis and decrease in protein catabolism likely contribute to the attenuation of disuse muscle atrophy through prolonged periods of immobility of hibernation. Support or Funding Information NIH [R21AR064995]; NIH Alaska INBRE [P20GM103395]; NIH COBRE [P20GM130443]
format Article in Journal/Newspaper
author Fedorov, Vadim B.
Barnes, Brian M.
Goropashnaya, Anna V.
spellingShingle Fedorov, Vadim B.
Barnes, Brian M.
Goropashnaya, Anna V.
Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
author_facet Fedorov, Vadim B.
Barnes, Brian M.
Goropashnaya, Anna V.
author_sort Fedorov, Vadim B.
title Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
title_short Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
title_full Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
title_fullStr Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
title_full_unstemmed Modulation of Gene Expression in Muscle of Hibernating Arctic Ground Squirrels ( Urocitellus parryii) and Attenuation of Disuse Muscle Atrophy
title_sort modulation of gene expression in muscle of hibernating arctic ground squirrels ( urocitellus parryii) and attenuation of disuse muscle atrophy
publisher Wiley
publishDate 2020
url http://dx.doi.org/10.1096/fasebj.2020.34.s1.08897
geographic Arctic
geographic_facet Arctic
genre Arctic
Urocitellus parryii
Alaska
genre_facet Arctic
Urocitellus parryii
Alaska
op_source The FASEB Journal
volume 34, issue S1, page 1-1
ISSN 0892-6638 1530-6860
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1096/fasebj.2020.34.s1.08897
container_title The FASEB Journal
container_volume 34
container_issue S1
container_start_page 1
op_container_end_page 1
_version_ 1800746398818238464