Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking

Juvenile bird migrants are generally believed to use a clock‐and‐compass migratory orientation strategy. According to such a strategy migrants accomplish their migration by flying a number of successive flight steps with direction and number of steps controlled by an endogenous programme. One powerf...

Full description

Bibliographic Details
Published in:Oikos
Main Authors: Thorup, Kasper, Alerstam, Thomas, Hake, Mikael, Kjellén, Nils
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2003
Subjects:
Online Access:http://dx.doi.org/10.1034/j.1600-0706.2003.12163.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1034%2Fj.1600-0706.2003.12163.x
https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-0706.2003.12163.x
id crwiley:10.1034/j.1600-0706.2003.12163.x
record_format openpolar
spelling crwiley:10.1034/j.1600-0706.2003.12163.x 2024-06-02T08:16:03+00:00 Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking Thorup, Kasper Alerstam, Thomas Hake, Mikael Kjellén, Nils 2003 http://dx.doi.org/10.1034/j.1600-0706.2003.12163.x https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1034%2Fj.1600-0706.2003.12163.x https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-0706.2003.12163.x en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Oikos volume 103, issue 2, page 350-359 ISSN 0030-1299 1600-0706 journal-article 2003 crwiley https://doi.org/10.1034/j.1600-0706.2003.12163.x 2024-05-03T11:47:44Z Juvenile bird migrants are generally believed to use a clock‐and‐compass migratory orientation strategy. According to such a strategy migrants accomplish their migration by flying a number of successive flight steps with direction and number of steps controlled by an endogenous programme. One powerful way of testing this is by comparing predictions from a model of such a strategy with observed patterns. We used data from ringing and satellite‐based radio telemetry to investigate the orientation system of juvenile ospreys ( Pandion haliaetus ) and honey buzzards ( Pernis apivorus ) migrating from Sweden to tropical west Africa. The ring recoveries showed a much larger scatter in the orientation of ospreys than of honey buzzards, but there was only a slight such difference in the satellite tracks. These tracks of individuals of both species were rather straight with a high directional concentration per step. The honey buzzard data showed a close fit to a simple vector summation model, which is expected if birds follow a clock‐and‐compass strategy. However, the osprey data did not fit such a simple model, as ring recoveries showed a significantly greater deviation at short distances than predicted on the basis of long distance data. Satellite tracking also indicated less concentrated orientation on short distances. The pattern observed for the osprey can generally be explained by an extended vector summation model, including an important element of pre‐migration dispersal. The existence of extensive dispersal in the osprey stands in contrast to the apparent absence of such dispersal in the honey buzzard. The explanation for this difference between the species is unclear. The model of orientation by vector summation is very sensitive to the existence of differences in mean direction between individuals. Assuming such differences, as tentatively indicated by the satellite tracking data, makes simple compass orientation by vector summation inconsistent with the distribution of ring recoveries at long distances, with a ... Article in Journal/Newspaper osprey Pandion haliaetus Wiley Online Library Oikos 103 2 350 359
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Juvenile bird migrants are generally believed to use a clock‐and‐compass migratory orientation strategy. According to such a strategy migrants accomplish their migration by flying a number of successive flight steps with direction and number of steps controlled by an endogenous programme. One powerful way of testing this is by comparing predictions from a model of such a strategy with observed patterns. We used data from ringing and satellite‐based radio telemetry to investigate the orientation system of juvenile ospreys ( Pandion haliaetus ) and honey buzzards ( Pernis apivorus ) migrating from Sweden to tropical west Africa. The ring recoveries showed a much larger scatter in the orientation of ospreys than of honey buzzards, but there was only a slight such difference in the satellite tracks. These tracks of individuals of both species were rather straight with a high directional concentration per step. The honey buzzard data showed a close fit to a simple vector summation model, which is expected if birds follow a clock‐and‐compass strategy. However, the osprey data did not fit such a simple model, as ring recoveries showed a significantly greater deviation at short distances than predicted on the basis of long distance data. Satellite tracking also indicated less concentrated orientation on short distances. The pattern observed for the osprey can generally be explained by an extended vector summation model, including an important element of pre‐migration dispersal. The existence of extensive dispersal in the osprey stands in contrast to the apparent absence of such dispersal in the honey buzzard. The explanation for this difference between the species is unclear. The model of orientation by vector summation is very sensitive to the existence of differences in mean direction between individuals. Assuming such differences, as tentatively indicated by the satellite tracking data, makes simple compass orientation by vector summation inconsistent with the distribution of ring recoveries at long distances, with a ...
format Article in Journal/Newspaper
author Thorup, Kasper
Alerstam, Thomas
Hake, Mikael
Kjellén, Nils
spellingShingle Thorup, Kasper
Alerstam, Thomas
Hake, Mikael
Kjellén, Nils
Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
author_facet Thorup, Kasper
Alerstam, Thomas
Hake, Mikael
Kjellén, Nils
author_sort Thorup, Kasper
title Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
title_short Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
title_full Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
title_fullStr Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
title_full_unstemmed Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – An analysis of ring recoveries and satellite tracking
title_sort can vector summation describe the orientation system of juvenile ospreys and honey buzzards? – an analysis of ring recoveries and satellite tracking
publisher Wiley
publishDate 2003
url http://dx.doi.org/10.1034/j.1600-0706.2003.12163.x
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1034%2Fj.1600-0706.2003.12163.x
https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-0706.2003.12163.x
genre osprey
Pandion haliaetus
genre_facet osprey
Pandion haliaetus
op_source Oikos
volume 103, issue 2, page 350-359
ISSN 0030-1299 1600-0706
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1034/j.1600-0706.2003.12163.x
container_title Oikos
container_volume 103
container_issue 2
container_start_page 350
op_container_end_page 359
_version_ 1800740393646555136