Surface airflow around Windless Bight, Ross Island, Antarctica

Abstract Ross Island, Antarctica is located along the Transantarctic Mountains and is subjected to a strong southerly mountain‐parallel wind regime. Despite this, Windless Bight on the island's southern coast is a region of anomalous calm. The atmospheric boundary layer dynamics that gives rise...

Full description

Bibliographic Details
Published in:Quarterly Journal of the Royal Meteorological Society
Main Authors: O'Connor, William P., Bromwich, David H.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 1988
Subjects:
Online Access:http://dx.doi.org/10.1002/qj.49711448205
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fqj.49711448205
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49711448205
id crwiley:10.1002/qj.49711448205
record_format openpolar
spelling crwiley:10.1002/qj.49711448205 2024-06-02T07:58:20+00:00 Surface airflow around Windless Bight, Ross Island, Antarctica O'Connor, William P. Bromwich, David H. 1988 http://dx.doi.org/10.1002/qj.49711448205 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fqj.49711448205 https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49711448205 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Quarterly Journal of the Royal Meteorological Society volume 114, issue 482, page 917-938 ISSN 0035-9009 1477-870X journal-article 1988 crwiley https://doi.org/10.1002/qj.49711448205 2024-05-03T11:10:51Z Abstract Ross Island, Antarctica is located along the Transantarctic Mountains and is subjected to a strong southerly mountain‐parallel wind regime. Despite this, Windless Bight on the island's southern coast is a region of anomalous calm. The atmospheric boundary layer dynamics that gives rise to this phenomenon is analysed both theoretically and observationally. It is the strong static stability of the boundary layer air encountering the high steep topography of Ross Island, that causes a stagnation zone resulting in the calm conditions of Windless Bight. Direct and proxy observations of boundary layer winds provide a detailed description of airflow around the island. The anomalous (with respect to the synoptic pressure field) but persistent north‐easterly winds at Scott Base are due to the deflection of highly stable, low‐level air around Hut Point Peninsula. By contrast, the less frequent, strong southerly winds which override the peninsula are associated with the influx of warm maritime air from cyclonic systems to the east. It is inferred that flow of air around the terrain of Ross Island gives rise to locally strong winds; these are responsible for the ice breakout and polynya occurrences in McMurdo Sound. The surface airflow past Ross Island can be modelled by a two‐dimensional, steady, frictionless, irrotational, incompressible flow past an obstacle, with a shape based on an island height contour. The flow is assumed to separate from the eastern and western sides of the island and form a wake downstream. A solution for this flow is presented, based on potential theory for streaming motion past an obstacle. The streamline and isobar patterns clearly depict the stagnation region in Windless Bight. For approaching winds of 20 ms −1 the local pressure field is perturbed by several millibars. Article in Journal/Newspaper Antarc* Antarctica McMurdo Sound Ross Island Wiley Online Library Hut Point ENVELOPE(166.850,166.850,-77.767,-77.767) Hut Point Peninsula ENVELOPE(166.850,166.850,-77.767,-77.767) McMurdo Sound Ross Island Scott Base ENVELOPE(166.766,166.766,-77.849,-77.849) Transantarctic Mountains Windless Bight ENVELOPE(167.667,167.667,-77.700,-77.700) Quarterly Journal of the Royal Meteorological Society 114 482 917 938
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Ross Island, Antarctica is located along the Transantarctic Mountains and is subjected to a strong southerly mountain‐parallel wind regime. Despite this, Windless Bight on the island's southern coast is a region of anomalous calm. The atmospheric boundary layer dynamics that gives rise to this phenomenon is analysed both theoretically and observationally. It is the strong static stability of the boundary layer air encountering the high steep topography of Ross Island, that causes a stagnation zone resulting in the calm conditions of Windless Bight. Direct and proxy observations of boundary layer winds provide a detailed description of airflow around the island. The anomalous (with respect to the synoptic pressure field) but persistent north‐easterly winds at Scott Base are due to the deflection of highly stable, low‐level air around Hut Point Peninsula. By contrast, the less frequent, strong southerly winds which override the peninsula are associated with the influx of warm maritime air from cyclonic systems to the east. It is inferred that flow of air around the terrain of Ross Island gives rise to locally strong winds; these are responsible for the ice breakout and polynya occurrences in McMurdo Sound. The surface airflow past Ross Island can be modelled by a two‐dimensional, steady, frictionless, irrotational, incompressible flow past an obstacle, with a shape based on an island height contour. The flow is assumed to separate from the eastern and western sides of the island and form a wake downstream. A solution for this flow is presented, based on potential theory for streaming motion past an obstacle. The streamline and isobar patterns clearly depict the stagnation region in Windless Bight. For approaching winds of 20 ms −1 the local pressure field is perturbed by several millibars.
format Article in Journal/Newspaper
author O'Connor, William P.
Bromwich, David H.
spellingShingle O'Connor, William P.
Bromwich, David H.
Surface airflow around Windless Bight, Ross Island, Antarctica
author_facet O'Connor, William P.
Bromwich, David H.
author_sort O'Connor, William P.
title Surface airflow around Windless Bight, Ross Island, Antarctica
title_short Surface airflow around Windless Bight, Ross Island, Antarctica
title_full Surface airflow around Windless Bight, Ross Island, Antarctica
title_fullStr Surface airflow around Windless Bight, Ross Island, Antarctica
title_full_unstemmed Surface airflow around Windless Bight, Ross Island, Antarctica
title_sort surface airflow around windless bight, ross island, antarctica
publisher Wiley
publishDate 1988
url http://dx.doi.org/10.1002/qj.49711448205
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fqj.49711448205
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49711448205
long_lat ENVELOPE(166.850,166.850,-77.767,-77.767)
ENVELOPE(166.850,166.850,-77.767,-77.767)
ENVELOPE(166.766,166.766,-77.849,-77.849)
ENVELOPE(167.667,167.667,-77.700,-77.700)
geographic Hut Point
Hut Point Peninsula
McMurdo Sound
Ross Island
Scott Base
Transantarctic Mountains
Windless Bight
geographic_facet Hut Point
Hut Point Peninsula
McMurdo Sound
Ross Island
Scott Base
Transantarctic Mountains
Windless Bight
genre Antarc*
Antarctica
McMurdo Sound
Ross Island
genre_facet Antarc*
Antarctica
McMurdo Sound
Ross Island
op_source Quarterly Journal of the Royal Meteorological Society
volume 114, issue 482, page 917-938
ISSN 0035-9009 1477-870X
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1002/qj.49711448205
container_title Quarterly Journal of the Royal Meteorological Society
container_volume 114
container_issue 482
container_start_page 917
op_container_end_page 938
_version_ 1800741649415929856