Response of distributions and emissions of summer biogenic sulfur in the Pacific Arctic to enhanced Pacific Water inflow

Abstract The inflow of warm and nutrient‐rich Pacific Water (PW) through the Bering Strait into the Arctic Ocean is likely to have far‐reaching consequences for the ecosystem and biogenic sulfur cycle in the Earth's sensitive subarctic–arctic region of the Pacific sector, even impacting climate...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: Li, Cheng‐Xuan, Wang, Bao‐Dong, Chen, Kan, Yang, Gui‐Peng, Chen, Jian‐Fang, Lin, Li‐Na, Wang, Zi‐Cheng
Other Authors: National Natural Science Foundation of China
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2023
Subjects:
Online Access:http://dx.doi.org/10.1002/lno.12458
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lno.12458
Description
Summary:Abstract The inflow of warm and nutrient‐rich Pacific Water (PW) through the Bering Strait into the Arctic Ocean is likely to have far‐reaching consequences for the ecosystem and biogenic sulfur cycle in the Earth's sensitive subarctic–arctic region of the Pacific sector, even impacting climate change under global warming scenarios. We performed a detailed biogeochemical study of summer biogenic sulfur cycling from cold (2012) to warm (2014) years in the Bering Strait and the Chukchi Sea, so as to highlight the importance of enhanced Pacific inflow in driving dimethylsulfide (DMS) variability. In the Bering Strait, the enhanced Pacific inflow led to the vertical expansion of the eastern high‐DMS regions due to the vertical extension of Alaska Coastal Water, and the horizontal expansion of the western surface high‐DMS regions due to the westward intrusion of Bering Shelf Water. The enhanced extension of PW potentially stimulated seawater warming, the northward retreat of the ice edge, and the enlargement of sea ice‐free areas in the Chukchi Sea. The northern ice melting zone at 71°N with a bloom of phytoplankton was an area of locally high dimethylsulfoniopropionate concentrations and slow DMS consumption in 2012. A hotspot for dimethylated sulfur compound concentrations and DMS sea–air flux occurred in the convergence region near 67.7°N during 2014, due to enhanced mixing caused by increased Bering Sea Water. Owing to the increased advection of PW during 2012–2014, surface DMS and its emission to the atmosphere increased sharply by threefold in the Chukchi Sea.