Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]

Abstract Isotopic discrimination against 13 C during photosynthesis is determined by a combination of environmental conditions and physiological mechanisms that control delivery of CO 2 to RUBISCO. This study investigated the effects of light, flow, dissolved inorganic carbon (DIC) concentration, an...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: McPherson, Meredith L., Zimmerman, Richard C., Hill, Victoria. J.
Other Authors: National Science Foundation, National Oceanic and Atmospheric Administration Virginia Sea Grant
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2015
Subjects:
Online Access:http://dx.doi.org/10.1002/lno.10142
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Flno.10142
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lno.10142
id crwiley:10.1002/lno.10142
record_format openpolar
spelling crwiley:10.1002/lno.10142 2024-06-23T07:55:54+00:00 Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC] McPherson, Meredith L. Zimmerman, Richard C. Hill, Victoria. J. National Science Foundation National Oceanic and Atmospheric Administration Virginia Sea Grant 2015 http://dx.doi.org/10.1002/lno.10142 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Flno.10142 https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lno.10142 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Limnology and Oceanography volume 60, issue 6, page 1875-1889 ISSN 0024-3590 1939-5590 journal-article 2015 crwiley https://doi.org/10.1002/lno.10142 2024-06-13T04:20:23Z Abstract Isotopic discrimination against 13 C during photosynthesis is determined by a combination of environmental conditions and physiological mechanisms that control delivery of CO 2 to RUBISCO. This study investigated the effects of light, flow, dissolved inorganic carbon (DIC) concentration, and its speciation, on photosynthetic carbon assimilation of Zostera marina L. (eelgrass) using a combination of laboratory experiments and theoretical calculations leading to a mechanistic understanding of environmental conditions that influence leaf carbon uptake and determine leaf stable carbon isotope signatures ( δ 13 C). Photosynthesis was saturated with respect to flow at low velocity (∼ 3 cm s −1 ), but was strongly influenced by [DIC], and particularly aqueous CO 2 (CO 2(aq) ) under all flow conditions. The non‐linear responses of light‐ and flow‐saturated photosynthesis to [DIC] were used to quantify the maximum physiological capacity for photosynthesis, and to determine the degree of photosynthetic carbon limitation for light‐saturated photosynthesis, which provided a mechanistic pathway for modeling regulation of carbon uptake and 13 C discrimination. Model predictions of δ 13 C spanned the typical range of values reported for a variety of seagrass taxa, and were most sensitive to [DIC] (predominantly [CO 2(aq) ]) and flow, but less sensitive to DIC source [CO 2(aq) vs. ]. These results provide a predictive understanding of the role of key environmental parameters (light, flow, and DIC availability) can have in driving δ 13 C of seagrasses, which will become increasingly important for predicting the response of these ecosystem engineers to local processes that affect light availability and flow, as well as global impacts of climate warming and ocean acidification in the Anthropocene. Article in Journal/Newspaper Ocean acidification Wiley Online Library Limnology and Oceanography 60 6 1875 1889
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Isotopic discrimination against 13 C during photosynthesis is determined by a combination of environmental conditions and physiological mechanisms that control delivery of CO 2 to RUBISCO. This study investigated the effects of light, flow, dissolved inorganic carbon (DIC) concentration, and its speciation, on photosynthetic carbon assimilation of Zostera marina L. (eelgrass) using a combination of laboratory experiments and theoretical calculations leading to a mechanistic understanding of environmental conditions that influence leaf carbon uptake and determine leaf stable carbon isotope signatures ( δ 13 C). Photosynthesis was saturated with respect to flow at low velocity (∼ 3 cm s −1 ), but was strongly influenced by [DIC], and particularly aqueous CO 2 (CO 2(aq) ) under all flow conditions. The non‐linear responses of light‐ and flow‐saturated photosynthesis to [DIC] were used to quantify the maximum physiological capacity for photosynthesis, and to determine the degree of photosynthetic carbon limitation for light‐saturated photosynthesis, which provided a mechanistic pathway for modeling regulation of carbon uptake and 13 C discrimination. Model predictions of δ 13 C spanned the typical range of values reported for a variety of seagrass taxa, and were most sensitive to [DIC] (predominantly [CO 2(aq) ]) and flow, but less sensitive to DIC source [CO 2(aq) vs. ]. These results provide a predictive understanding of the role of key environmental parameters (light, flow, and DIC availability) can have in driving δ 13 C of seagrasses, which will become increasingly important for predicting the response of these ecosystem engineers to local processes that affect light availability and flow, as well as global impacts of climate warming and ocean acidification in the Anthropocene.
author2 National Science Foundation
National Oceanic and Atmospheric Administration Virginia Sea Grant
format Article in Journal/Newspaper
author McPherson, Meredith L.
Zimmerman, Richard C.
Hill, Victoria. J.
spellingShingle McPherson, Meredith L.
Zimmerman, Richard C.
Hill, Victoria. J.
Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
author_facet McPherson, Meredith L.
Zimmerman, Richard C.
Hill, Victoria. J.
author_sort McPherson, Meredith L.
title Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
title_short Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
title_full Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
title_fullStr Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
title_full_unstemmed Predicting carbon isotope discrimination in Eelgrass ( Zostera marina L.) from the environmental parameters—light, flow, and [DIC]
title_sort predicting carbon isotope discrimination in eelgrass ( zostera marina l.) from the environmental parameters—light, flow, and [dic]
publisher Wiley
publishDate 2015
url http://dx.doi.org/10.1002/lno.10142
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Flno.10142
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lno.10142
genre Ocean acidification
genre_facet Ocean acidification
op_source Limnology and Oceanography
volume 60, issue 6, page 1875-1889
ISSN 0024-3590 1939-5590
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1002/lno.10142
container_title Limnology and Oceanography
container_volume 60
container_issue 6
container_start_page 1875
op_container_end_page 1889
_version_ 1802648681649799168