Orbital‐ and millennial‐scale paleoceanographic changes in the north‐eastern Japan Basin, East Sea/Japan Sea during the late Quaternary

Abstract Two gravity sediment cores (GH99‐1239 and GH99‐1246) obtained from the north‐eastern Japan Basin in the East Sea/Japan Sea were analyzed for the orbital‐ and millennial‐scale paleoceanographic changes. Chronostratigraphically, core GH99‐1239 represents a continuous sedimentary record since...

Full description

Bibliographic Details
Published in:Journal of Quaternary Science
Main Authors: Khim, Boo‐Keun, Ikehara, Ken, Irino, Tomohisa
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2011
Subjects:
Online Access:http://dx.doi.org/10.1002/jqs.1554
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjqs.1554
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jqs.1554
Description
Summary:Abstract Two gravity sediment cores (GH99‐1239 and GH99‐1246) obtained from the north‐eastern Japan Basin in the East Sea/Japan Sea were analyzed for the orbital‐ and millennial‐scale paleoceanographic changes. Chronostratigraphically, core GH99‐1239 represents a continuous sedimentary record since 32 ka, based on correlation of distinct lithological markers (i.e. dark layer or TL layer) with those in core GH98‐1232 collected nearby. For core GH99‐1246, the age model is constructed through correlation of lightness ( L *) values and tephra (Aso‐4 and Toya) layers with those in the well‐dated Oki Ridge core (MD01‐2407), indicating about 134 ka of sedimentation since the latest Marine Isotope Stage (MIS) 6. New geochemical data from both cores corroborate orbital‐scale paleoceanographic variation, such that surface‐water productivity, represented by biogenic opal and total organic carbon (TOC) contents, increased during MIS 1 and MIS 5; CaCO 3 contents do not show such distinct glacial–interglacial cycles, but were influenced by dissolution and preservation rather than foraminiferal production. During the glacial periods when sea ice was prevalent, surface‐water productivity was low, and bottom‐water conditions became anoxic, as indicated by high total sulfur (TS) contents and high Mo concentrations. The geochemical data further document millennial‐scale paleoceanographic variability, corresponding to a series of thin TL layers in response to Dansgaard–Oeschger cycles but irrespective of the glacial or interglacial periods. In particular, thin TL layers formed during MIS 3 are characterized by less TOC (about 1%) and TS (about 0.4%) contents and lower Mo (about 5 p.p.m.) concentration, whereas those during MIS 4 and MIS 5 exhibit more TOC (up to 4%) and TS (up to 5%) contents and higher Mo (up to 120 p.p.m.) concentration. Such a discrepancy is attributed to different degree of surface‐water productivity and of bottom‐water oxygenation, which is closely related to the sea level position and extent of ventilation. ...