Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998

ABSTRACT This study employed the wavelet empirical orthogonal function ( WEOF ) analysis to analyse the nonstationary variability of rainfall in Ethiopia and global sea surface temperature ( SST ) for 1900–1998. The study found that the nonstationary variations of both the June to September ( JJAS )...

Full description

Bibliographic Details
Published in:International Journal of Climatology
Main Authors: Elsanabary, Mohamed Helmy, Gan, Thian Yew, Mwale, Davison
Other Authors: Egyptian Ministry of Higher Education
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2013
Subjects:
Online Access:http://dx.doi.org/10.1002/joc.3802
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjoc.3802
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.3802
id crwiley:10.1002/joc.3802
record_format openpolar
spelling crwiley:10.1002/joc.3802 2024-06-02T07:58:26+00:00 Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998 Elsanabary, Mohamed Helmy Gan, Thian Yew Mwale, Davison Egyptian Ministry of Higher Education 2013 http://dx.doi.org/10.1002/joc.3802 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjoc.3802 https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.3802 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor International Journal of Climatology volume 34, issue 6, page 1798-1813 ISSN 0899-8418 1097-0088 journal-article 2013 crwiley https://doi.org/10.1002/joc.3802 2024-05-03T11:12:25Z ABSTRACT This study employed the wavelet empirical orthogonal function ( WEOF ) analysis to analyse the nonstationary variability of rainfall in Ethiopia and global sea surface temperature ( SST ) for 1900–1998. The study found that the nonstationary variations of both the June to September ( JJAS ) and February to May ( FMAM ) Ethiopian rainfall can be delineated into three zones: western half of Ethiopia north of the Great Rift Valley ( GRV ), southern Ethiopia south of the GRV and the GRV from southwestern Ethiopia to the Afar Triangle. The leading wavelet principal component ( WPC ) signals showed that Ethiopian rainfall had been in stagnation for most of 1900–1998, with major droughts in the 1940s and 1980s. The dominant frequencies of Ethiopian rainfall ranged between 2 and 8 years. In western Ethiopia, the 2–4‐year rainfall frequencies dominated the rainfall variation, but their trends are modulated by 5–7‐year frequencies, whereas in the Afar Triangle, the 5–7‐year frequencies were dominant. Between 1900 and 1998, the Afar Triangle region experienced decreasing rainfall for 60 years (1900–1960). The seasonal global SST revealed that regardless of what time of the year, the strongest contributions to global SST variations occur in the Antarctic Ocean, the El Niño region of South America and in the southwestern Pacific Ocean, followed by the Atlantic and the Indian Oceans. Further, this study also shows annual migrations of SST variations in the El Niño region, the Antarctic and the Atlantic Oceans. The leading SST signal variations show that SST warming started in the Atlantic and Indian Oceans, from 1950 to 1975, and spread to the Antarctic Ocean between 1960 and 1990, which probably contributed to the melting of sea ice. Teleconnections between WPC1 of Ethiopian rainfall and SST scale‐averaged wavelet power were found for the El Niño region and northern Atlantic, west of the Sahara desert. Article in Journal/Newspaper Antarc* Antarctic Antarctic Ocean Sea ice Wiley Online Library Antarctic Antarctic Ocean Indian Pacific The Antarctic International Journal of Climatology 34 6 1798 1813
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description ABSTRACT This study employed the wavelet empirical orthogonal function ( WEOF ) analysis to analyse the nonstationary variability of rainfall in Ethiopia and global sea surface temperature ( SST ) for 1900–1998. The study found that the nonstationary variations of both the June to September ( JJAS ) and February to May ( FMAM ) Ethiopian rainfall can be delineated into three zones: western half of Ethiopia north of the Great Rift Valley ( GRV ), southern Ethiopia south of the GRV and the GRV from southwestern Ethiopia to the Afar Triangle. The leading wavelet principal component ( WPC ) signals showed that Ethiopian rainfall had been in stagnation for most of 1900–1998, with major droughts in the 1940s and 1980s. The dominant frequencies of Ethiopian rainfall ranged between 2 and 8 years. In western Ethiopia, the 2–4‐year rainfall frequencies dominated the rainfall variation, but their trends are modulated by 5–7‐year frequencies, whereas in the Afar Triangle, the 5–7‐year frequencies were dominant. Between 1900 and 1998, the Afar Triangle region experienced decreasing rainfall for 60 years (1900–1960). The seasonal global SST revealed that regardless of what time of the year, the strongest contributions to global SST variations occur in the Antarctic Ocean, the El Niño region of South America and in the southwestern Pacific Ocean, followed by the Atlantic and the Indian Oceans. Further, this study also shows annual migrations of SST variations in the El Niño region, the Antarctic and the Atlantic Oceans. The leading SST signal variations show that SST warming started in the Atlantic and Indian Oceans, from 1950 to 1975, and spread to the Antarctic Ocean between 1960 and 1990, which probably contributed to the melting of sea ice. Teleconnections between WPC1 of Ethiopian rainfall and SST scale‐averaged wavelet power were found for the El Niño region and northern Atlantic, west of the Sahara desert.
author2 Egyptian Ministry of Higher Education
format Article in Journal/Newspaper
author Elsanabary, Mohamed Helmy
Gan, Thian Yew
Mwale, Davison
spellingShingle Elsanabary, Mohamed Helmy
Gan, Thian Yew
Mwale, Davison
Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
author_facet Elsanabary, Mohamed Helmy
Gan, Thian Yew
Mwale, Davison
author_sort Elsanabary, Mohamed Helmy
title Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
title_short Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
title_full Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
title_fullStr Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
title_full_unstemmed Application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of Ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
title_sort application of wavelet empirical orthogonal function analysis to investigate the nonstationary character of ethiopian rainfall and its teleconnection to nonstationary global sea surface temperature variations for 1900–1998
publisher Wiley
publishDate 2013
url http://dx.doi.org/10.1002/joc.3802
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fjoc.3802
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.3802
geographic Antarctic
Antarctic Ocean
Indian
Pacific
The Antarctic
geographic_facet Antarctic
Antarctic Ocean
Indian
Pacific
The Antarctic
genre Antarc*
Antarctic
Antarctic Ocean
Sea ice
genre_facet Antarc*
Antarctic
Antarctic Ocean
Sea ice
op_source International Journal of Climatology
volume 34, issue 6, page 1798-1813
ISSN 0899-8418 1097-0088
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1002/joc.3802
container_title International Journal of Climatology
container_volume 34
container_issue 6
container_start_page 1798
op_container_end_page 1813
_version_ 1800741770099687424