Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery

Abstract Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient...

Full description

Bibliographic Details
Published in:Earth Surface Processes and Landforms
Main Authors: Mertes, Jordan R., Gulley, Jason D., Benn, Douglas I., Thompson, Sarah S., Nicholson, Lindsey I.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2017
Subjects:
Online Access:http://dx.doi.org/10.1002/esp.4188
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fesp.4188
https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.4188
id crwiley:10.1002/esp.4188
record_format openpolar
spelling crwiley:10.1002/esp.4188 2024-09-15T18:07:52+00:00 Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery Mertes, Jordan R. Gulley, Jason D. Benn, Douglas I. Thompson, Sarah S. Nicholson, Lindsey I. 2017 http://dx.doi.org/10.1002/esp.4188 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fesp.4188 https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.4188 en eng Wiley http://onlinelibrary.wiley.com/termsAndConditions#vor Earth Surface Processes and Landforms volume 42, issue 14, page 2350-2364 ISSN 0197-9337 1096-9837 journal-article 2017 crwiley https://doi.org/10.1002/esp.4188 2024-08-15T04:18:57Z Abstract Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a −1 (1896–2010) to 0.86 m a −1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a −1 (1978–2015). ... Article in Journal/Newspaper glacier Wiley Online Library Earth Surface Processes and Landforms 42 14 2350 2364
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a −1 (1896–2010) to 0.86 m a −1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a −1 (1978–2015). ...
format Article in Journal/Newspaper
author Mertes, Jordan R.
Gulley, Jason D.
Benn, Douglas I.
Thompson, Sarah S.
Nicholson, Lindsey I.
spellingShingle Mertes, Jordan R.
Gulley, Jason D.
Benn, Douglas I.
Thompson, Sarah S.
Nicholson, Lindsey I.
Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
author_facet Mertes, Jordan R.
Gulley, Jason D.
Benn, Douglas I.
Thompson, Sarah S.
Nicholson, Lindsey I.
author_sort Mertes, Jordan R.
title Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
title_short Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
title_full Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
title_fullStr Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
title_full_unstemmed Using structure‐from‐motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery
title_sort using structure‐from‐motion to create glacier dems and orthoimagery from historical terrestrial and oblique aerial imagery
publisher Wiley
publishDate 2017
url http://dx.doi.org/10.1002/esp.4188
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fesp.4188
https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.4188
genre glacier
genre_facet glacier
op_source Earth Surface Processes and Landforms
volume 42, issue 14, page 2350-2364
ISSN 0197-9337 1096-9837
op_rights http://onlinelibrary.wiley.com/termsAndConditions#vor
op_doi https://doi.org/10.1002/esp.4188
container_title Earth Surface Processes and Landforms
container_volume 42
container_issue 14
container_start_page 2350
op_container_end_page 2364
_version_ 1810445223582498816