Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer

Abstract The dynamic interactions between predators and their prey have two fundamental processes: numerical and functional responses. Numerical response is defined as predator growth rate as a function of prey density or both prey and predator densities [ dP/dt = f ( N , P )]. Functional response i...

Full description

Bibliographic Details
Published in:Ecological Monographs
Main Authors: Andrén, Henrik, Liberg, Olof
Other Authors: Naturvårdsverket, Svenska Forskningsrådet Formas, Vetenskapsrådet
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2023
Subjects:
Online Access:http://dx.doi.org/10.1002/ecm.1594
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1594
id crwiley:10.1002/ecm.1594
record_format openpolar
spelling crwiley:10.1002/ecm.1594 2024-09-30T14:46:23+00:00 Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer Andrén, Henrik Liberg, Olof Naturvårdsverket Svenska Forskningsrådet Formas Vetenskapsrådet 2023 http://dx.doi.org/10.1002/ecm.1594 https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1594 en eng Wiley http://creativecommons.org/licenses/by/4.0/ Ecological Monographs volume 94, issue 1 ISSN 0012-9615 1557-7015 journal-article 2023 crwiley https://doi.org/10.1002/ecm.1594 2024-09-19T04:20:15Z Abstract The dynamic interactions between predators and their prey have two fundamental processes: numerical and functional responses. Numerical response is defined as predator growth rate as a function of prey density or both prey and predator densities [ dP/dt = f ( N , P )]. Functional response is defined as the kill rate by an individual predator being a function of prey density or prey and predator densities combined. Although there are relatively many studies on the functional response in mammalian predators, the numerical response remains poorly documented. We studied the numerical response of Eurasian lynx ( Lynx lynx ) to various densities of its primary prey species, roe deer ( Capreolus capreolus ), and to itself (lynx). We exploited an unusual natural situation, spanning three decades where lynx, after a period of absence in central and southern Sweden, during which roe deer populations had grown to high densities, subsequently recolonized region after region, from north to south. We divided the study area into seven regions, with increasing productivity from north to south. We found strong effects of both roe deer density and lynx density on lynx numerical response. Thus, both resources and intraspecific competition for these resources are important to understanding the lynx population dynamic. We built a series of deterministic lynx–roe deer models, and applied them to the seven regions. We found a very good fit between these Lotka–Volterra type models and the data. The deterministic models produced almost cyclic dynamics or dampened cycles in five of the seven regions. Thus, we documented population cycles in this large predator–large herbivore system, which is rarely done. The amplitudes in the dampened cycles decreased toward the south. Thus, the dynamics between lynx and roe deer became more stable with increasing carrying capacity for roe deer, which is related to higher productivity in the environment. This increased stability could be explained by variation in predation risk, where human ... Article in Journal/Newspaper Lynx Lynx lynx lynx Wiley Online Library Ecological Monographs
institution Open Polar
collection Wiley Online Library
op_collection_id crwiley
language English
description Abstract The dynamic interactions between predators and their prey have two fundamental processes: numerical and functional responses. Numerical response is defined as predator growth rate as a function of prey density or both prey and predator densities [ dP/dt = f ( N , P )]. Functional response is defined as the kill rate by an individual predator being a function of prey density or prey and predator densities combined. Although there are relatively many studies on the functional response in mammalian predators, the numerical response remains poorly documented. We studied the numerical response of Eurasian lynx ( Lynx lynx ) to various densities of its primary prey species, roe deer ( Capreolus capreolus ), and to itself (lynx). We exploited an unusual natural situation, spanning three decades where lynx, after a period of absence in central and southern Sweden, during which roe deer populations had grown to high densities, subsequently recolonized region after region, from north to south. We divided the study area into seven regions, with increasing productivity from north to south. We found strong effects of both roe deer density and lynx density on lynx numerical response. Thus, both resources and intraspecific competition for these resources are important to understanding the lynx population dynamic. We built a series of deterministic lynx–roe deer models, and applied them to the seven regions. We found a very good fit between these Lotka–Volterra type models and the data. The deterministic models produced almost cyclic dynamics or dampened cycles in five of the seven regions. Thus, we documented population cycles in this large predator–large herbivore system, which is rarely done. The amplitudes in the dampened cycles decreased toward the south. Thus, the dynamics between lynx and roe deer became more stable with increasing carrying capacity for roe deer, which is related to higher productivity in the environment. This increased stability could be explained by variation in predation risk, where human ...
author2 Naturvårdsverket
Svenska Forskningsrådet Formas
Vetenskapsrådet
format Article in Journal/Newspaper
author Andrén, Henrik
Liberg, Olof
spellingShingle Andrén, Henrik
Liberg, Olof
Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
author_facet Andrén, Henrik
Liberg, Olof
author_sort Andrén, Henrik
title Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
title_short Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
title_full Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
title_fullStr Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
title_full_unstemmed Numerical response of predator to prey: Dynamic interactions and population cycles in Eurasian lynx and roe deer
title_sort numerical response of predator to prey: dynamic interactions and population cycles in eurasian lynx and roe deer
publisher Wiley
publishDate 2023
url http://dx.doi.org/10.1002/ecm.1594
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1594
genre Lynx
Lynx lynx lynx
genre_facet Lynx
Lynx lynx lynx
op_source Ecological Monographs
volume 94, issue 1
ISSN 0012-9615 1557-7015
op_rights http://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.1002/ecm.1594
container_title Ecological Monographs
_version_ 1811646418097537024