Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates

Abstract Responses to climate change can vary across functional groups and trophic levels, leading to a temporal decoupling of trophic interactions or “phenological mismatches.” Despite a growing number of single‐species studies that identified phenological mismatches as a nearly universal consequen...

Full description

Bibliographic Details
Published in:Ecological Monographs
Main Authors: Kwon, Eunbi, Weiser, Emily L., Lanctot, Richard B., Brown, Stephen C., Gates, Heather R., Gilchrist, Grant, Kendall, Steve J., Lank, David B., Liebezeit, Joseph R., McKinnon, Laura, Nol, Erica, Payer, David C., Rausch, Jennie, Rinella, Daniel J., Saalfeld, Sarah T., Senner, Nathan R., Smith, Paul A., Ward, David, Wisseman, Robert W., Sandercock, Brett K.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2019
Subjects:
Online Access:http://dx.doi.org/10.1002/ecm.1383
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fecm.1383
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1383
https://onlinelibrary.wiley.com/doi/full-xml/10.1002/ecm.1383
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecm.1383
Description
Summary:Abstract Responses to climate change can vary across functional groups and trophic levels, leading to a temporal decoupling of trophic interactions or “phenological mismatches.” Despite a growing number of single‐species studies that identified phenological mismatches as a nearly universal consequence of climate change, we have a limited understanding of the spatial variation in the intensity of this phenomenon and what influences this variation. In this study, we tested for geographic patterns in phenological mismatches between six species of shorebirds and their invertebrate prey at 10 sites spread across ~13° latitude and ~84° longitude in the Arctic over three years. At each site, we quantified the phenological mismatch between shorebirds and their invertebrate prey at (1) an individual‐nest level, as the difference in days between the seasonal peak in food and the peak demand by chicks, and (2) a population level, as the overlapped area under fitted curves for total daily biomass of invertebrates and dates of the peak demand by chicks. We tested whether the intensity of past climatic change observed at each site corresponded with the extent of phenological mismatch and used structural equation modeling to test for causal relationships among (1) environmental factors, including geographic location and current climatic conditions, (2) the timing of invertebrate emergence and the breeding phenology of shorebirds, and (3) the phenological mismatch between the two trophic levels. The extent of phenological mismatch varied more among different sites than among different species within each site. A greater extent of phenological mismatch at both the individual‐nest and population levels coincided with changes in the timing of snowmelt as well as the potential dissociation of long‐term snow phenology from changes in temperature. The timing of snowmelt also affected the shape of the food and demand curves, which determined the extent of phenological mismatch at the population level. Finally, we found larger ...