Enzymatic pretreatment of low‐grade oils for biodiesel production

ABSTRACT The alkaline process for making biodiesel (fatty acid methyl esters, or FAME) is highly efficient at the transesterification of glycerides. However, its performance is poor when it comes to using oil that contain significant amounts of free fatty acids (FFA). The traditional approach to suc...

Full description

Bibliographic Details
Published in:Biotechnology and Bioengineering
Main Authors: Nordblad, Mathias, Pedersen, Anders K., Rancke‐Madsen, Anders, Woodley, John M.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2015
Subjects:
Online Access:http://dx.doi.org/10.1002/bit.25846
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fbit.25846
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.25846
Description
Summary:ABSTRACT The alkaline process for making biodiesel (fatty acid methyl esters, or FAME) is highly efficient at the transesterification of glycerides. However, its performance is poor when it comes to using oil that contain significant amounts of free fatty acids (FFA). The traditional approach to such feedstocks is to employ acid catalysis, which is slow and requires a large excess of methanol, or to evaporate FFA and convert that in a separate process. An attractive option would be to convert the FFA in oil feedstocks to FAME, before introducing it into the alkaline process. The high selectivity of enzyme catalysis makes it a suitable basis for such a pretreatment process. In this work, we present a characterization of the pretreatment of high‐FFA rapeseed oil using immobilized Candida antarctica lipase B (Novozym 435), focused on the impact of initial FFA and methanol concentration. Based on experimental results, we have identified limitations for the process in terms of FFA concentration in the feedstock and make suggestions for process operation. It was found that, using 5% catalyst and 4% methanol at 35°C, the FFA concentration could be reduced to 0.5% within an hour for feedstock containing up to 15% FFA. Further, the reaction was observed to be under kinetic control, in that the biocatalyst converts FFA (and FAME) at a much higher rate than glyceride substrates. There is thus, both a minimum and a maximum reaction time for the process to achieve the desired concentration of FFA. Finally, an assessment of process stability in a continuous packed bed system indicates that as much as 15 m 3 oil could potentially be pretreated by 1 kg of biocatalyst at the given process conditions. Biotechnol. Bioeng. 2016;113: 754–760. © 2015 Wiley Periodicals, Inc.