Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils

Microbial processes, including extracellular enzyme (exoenzyme) production, are a major driver of decomposition and a current topic of interest in Arctic soils due to the effects of climate warming. While enzyme activity levels are often assessed, we lack information on the specific location of thes...

Full description

Bibliographic Details
Published in:Elementa: Science of the Anthropocene
Main Authors: Martinez, Jane, McLaren, Jennie, Tweedie, Craig E., Darrouzet-Nardi, Anthony
Format: Article in Journal/Newspaper
Language:English
Published: University of California Press 2021
Subjects:
Online Access:http://dx.doi.org/10.1525/elementa.2021.00020
http://online.ucpress.edu/elementa/article-pdf/doi/10.1525/elementa.2021.00020/483438/elementa.2021.00020.pdf
id crunicaliforniap:10.1525/elementa.2021.00020
record_format openpolar
spelling crunicaliforniap:10.1525/elementa.2021.00020 2024-10-20T14:06:43+00:00 Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils Martinez, Jane McLaren, Jennie Tweedie, Craig E. Darrouzet-Nardi, Anthony 2021 http://dx.doi.org/10.1525/elementa.2021.00020 http://online.ucpress.edu/elementa/article-pdf/doi/10.1525/elementa.2021.00020/483438/elementa.2021.00020.pdf en eng University of California Press http://creativecommons.org/licenses/by/4.0/ Elementa: Science of the Anthropocene volume 9, issue 1 ISSN 2325-1026 journal-article 2021 crunicaliforniap https://doi.org/10.1525/elementa.2021.00020 2024-09-27T04:15:49Z Microbial processes, including extracellular enzyme (exoenzyme) production, are a major driver of decomposition and a current topic of interest in Arctic soils due to the effects of climate warming. While enzyme activity levels are often assessed, we lack information on the specific location of these exoenzymes within the soil matrix. Identifying the locations of different soil enzymes is needed to improve our understanding of microbial and overall ecosystem function. Using soil obtained from Utqiaġvik, Alaska, our objectives in the study are (1) to measure the activity of enzymes in soil pore water, (2) to examine the distribution of activity among soil particle size fractions using filtration, and (3) to cross these particle size fraction analyses with disruption techniques (blending to shred and sonication to further separate clumped/aggregated soil materials) to assess how tightly bound the enzymes are to the particles. The results of the soil pore water assays showed little to no enzyme activity (<0.05 nmol g soil–1 h–1), suggesting that enzymes are not abundant in soil pore water. In the soil cores, we detected activity for most of the hydrolytic enzymes, and there were clear differences among the particle size and disruption treatments. Higher activities in unfiltered and 50-µm filters relative to much finer 2-µm filters suggested that the enzymes were preferentially associated with larger particles in the soil, likely the organic material that makes up the bulk of these Arctic soils. Furthermore, in the sonication + blending treatment with no filter, 5 of 6 hydrolytic enzymes showed higher activity compared to blending only (and much higher than sonication only), further indicating that enzyme–substrate complexes throughout the organic matter component of the soil matrix are the sites of hydrolytic enzyme activity. These results suggest that the enzymes are likely bound to either the producing microbes, which are bound to the substrates, or directly to the larger organic substrates they are ... Article in Journal/Newspaper Arctic Tundra Alaska University of California Press Arctic Elementa: Science of the Anthropocene 9 1
institution Open Polar
collection University of California Press
op_collection_id crunicaliforniap
language English
description Microbial processes, including extracellular enzyme (exoenzyme) production, are a major driver of decomposition and a current topic of interest in Arctic soils due to the effects of climate warming. While enzyme activity levels are often assessed, we lack information on the specific location of these exoenzymes within the soil matrix. Identifying the locations of different soil enzymes is needed to improve our understanding of microbial and overall ecosystem function. Using soil obtained from Utqiaġvik, Alaska, our objectives in the study are (1) to measure the activity of enzymes in soil pore water, (2) to examine the distribution of activity among soil particle size fractions using filtration, and (3) to cross these particle size fraction analyses with disruption techniques (blending to shred and sonication to further separate clumped/aggregated soil materials) to assess how tightly bound the enzymes are to the particles. The results of the soil pore water assays showed little to no enzyme activity (<0.05 nmol g soil–1 h–1), suggesting that enzymes are not abundant in soil pore water. In the soil cores, we detected activity for most of the hydrolytic enzymes, and there were clear differences among the particle size and disruption treatments. Higher activities in unfiltered and 50-µm filters relative to much finer 2-µm filters suggested that the enzymes were preferentially associated with larger particles in the soil, likely the organic material that makes up the bulk of these Arctic soils. Furthermore, in the sonication + blending treatment with no filter, 5 of 6 hydrolytic enzymes showed higher activity compared to blending only (and much higher than sonication only), further indicating that enzyme–substrate complexes throughout the organic matter component of the soil matrix are the sites of hydrolytic enzyme activity. These results suggest that the enzymes are likely bound to either the producing microbes, which are bound to the substrates, or directly to the larger organic substrates they are ...
format Article in Journal/Newspaper
author Martinez, Jane
McLaren, Jennie
Tweedie, Craig E.
Darrouzet-Nardi, Anthony
spellingShingle Martinez, Jane
McLaren, Jennie
Tweedie, Craig E.
Darrouzet-Nardi, Anthony
Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
author_facet Martinez, Jane
McLaren, Jennie
Tweedie, Craig E.
Darrouzet-Nardi, Anthony
author_sort Martinez, Jane
title Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
title_short Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
title_full Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
title_fullStr Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
title_full_unstemmed Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils
title_sort soil enzymes are preferentially associated with larger particles in highly organic arctic tundra soils
publisher University of California Press
publishDate 2021
url http://dx.doi.org/10.1525/elementa.2021.00020
http://online.ucpress.edu/elementa/article-pdf/doi/10.1525/elementa.2021.00020/483438/elementa.2021.00020.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
Tundra
Alaska
genre_facet Arctic
Tundra
Alaska
op_source Elementa: Science of the Anthropocene
volume 9, issue 1
ISSN 2325-1026
op_rights http://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.1525/elementa.2021.00020
container_title Elementa: Science of the Anthropocene
container_volume 9
container_issue 1
_version_ 1813445454773354496