Processes controlling aggregate formation and distribution during the Arctic phytoplankton spring bloom in Baffin Bay

In the last decades, the Arctic Ocean has been affected by climate change, leading to alterations in the sea ice cover that influence the phytoplankton spring bloom, its associated food web, and therefore carbon sequestration. During the Green Edge 2016 expedition in the central Baffin Bay, the phyt...

Full description

Bibliographic Details
Published in:Elementa: Science of the Anthropocene
Main Authors: Toullec, Jordan, Moriceau, Brivaëla, Vincent, Dorothée, Guidi, Lionel, Lafond, Augustin, Babin, Marcel
Format: Article in Journal/Newspaper
Language:English
Published: University of California Press 2021
Subjects:
Online Access:http://dx.doi.org/10.1525/elementa.2021.00001
https://online.ucpress.edu/elementa/article-pdf/doi/10.1525/elementa.2021.00001/483229/elementa.2021.00001.pdf
Description
Summary:In the last decades, the Arctic Ocean has been affected by climate change, leading to alterations in the sea ice cover that influence the phytoplankton spring bloom, its associated food web, and therefore carbon sequestration. During the Green Edge 2016 expedition in the central Baffin Bay, the phytoplankton spring bloom and its development around the ice edge was followed along 7 transects from open water to the ice-pack interior. Here, we studied some of the processes driving phytoplankton aggregation, using aggregate and copepod distribution profiles obtained with an underwater vision profiler deployed at several stations along the transects. Our results revealed a sequential pattern during sea ice retreat in phytoplankton production and in aggregate production and distribution. First, under sea ice, phytoplankton started to grow, but aggregates were not formed. Second, after sea ice melting, phytoplankton (diatoms and Phaeocystis spp. as the dominant groups) benefited from the light availability and stratified environment to bloom, and aggregation began coincident with nutrient depletion at the surface. Third, maxima of phytoplankton aggregates deepened in the water column and phytoplankton cells at the surface began to degrade. At most stations, silicate limitation began first, triggering aggregation of the phytoplankton cells; nitrate limitation came later. Copepods followed aggregates at the end of the phytoplankton bloom, possibly because aggregates provided higher quality food than senescing phytoplankton cells at the surface. These observations suggest that aggregation is involved in 2 export pathways constituting the biological pump: the gravitational pathway through the sinking of aggregates and fecal pellets and the migration pathway when zooplankton follow aggregates during food foraging.