The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns
Abstract Sea ice plays an important role in high latitude biogeochemical cycles, ecosystems, and climate. A complete understanding of how sea ice biogeochemistry contributes to these processes must take into account the metabolic functions of the sea ice bacterial community. While the roles of sea i...
Published in: | Elementa: Science of the Anthropocene |
---|---|
Main Author: | |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
University of California Press
2015
|
Subjects: | |
Online Access: | http://dx.doi.org/10.12952/journal.elementa.000072 http://online.ucpress.edu/elementa/article-pdf/doi/10.12952/journal.elementa.000072/427879/79-781-1-ce.pdf |
Summary: | Abstract Sea ice plays an important role in high latitude biogeochemical cycles, ecosystems, and climate. A complete understanding of how sea ice biogeochemistry contributes to these processes must take into account the metabolic functions of the sea ice bacterial community. While the roles of sea ice bacteria in the carbon cycle and sea ice microbial loop are evidenced by high rates of bacterial production (BP), their metabolic diversity extends far beyond heterotrophy, and their functionality encompasses much more than carbon turnover. Work over the last three decades has identified an active role for sea ice bacteria in phosphate and nitrogen cycling, mutualistic partnerships with ice algae, and even prokaryotic carbon fixation. To better understand the role of sea ice bacteria in the carbon cycle the existing sea ice BP and primary production data were synthesized. BP in sea ice was poorly correlated with primary production, but had a strong, variable relationship with chlorophyll a, with a positive correlation below 50 mg chlorophyll a m-3 and a negative correlation above this value. These results concur with previous work suggesting that BP can be inhibited by grazing or the production of bacteriostatic compounds. To extend existing observations and predictions of other community functions a metabolic inference technique was used on the available 16S rRNA gene data. This analysis provided taxonomic support for some observed metabolic processes, as well as underexplored processes such as sulfur oxidation and nitrogen fixation. The decreasing spatial and temporal extent of sea ice, and altered timing of ice formation and melt, are likely to impact the structure and function of sea ice bacterial communities. An adequate modeling framework and studies that can resolve the functional dynamics of the sea ice bacterial community, such as community gene expression studies, are urgently needed to predict future change. |
---|