Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia

Abstract Background Forest distribution in the forest-steppe of Mongolia depends on relief, permafrost, and climate, and is highly sensitive to climate change and anthropogenic disturbance. Forest fires and logging decreased the forest area in the forest-steppe of Mongolia. The intention of this stu...

Full description

Bibliographic Details
Published in:Forest Ecosystems
Main Authors: Klinge, Michael, Dulamsuren, Choimaa, Schneider, Florian, Erasmi, Stefan, Bayarsaikhan, Uudus, Sauer, Daniela, Hauck, Markus
Other Authors: Deutsche Forschungsgemeinschaft, Volkswagen Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1186/s40663-021-00333-9
https://link.springer.com/content/pdf/10.1186/s40663-021-00333-9.pdf
https://link.springer.com/article/10.1186/s40663-021-00333-9/fulltext.html
id crspringernat:10.1186/s40663-021-00333-9
record_format openpolar
spelling crspringernat:10.1186/s40663-021-00333-9 2023-05-15T17:58:23+02:00 Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia Klinge, Michael Dulamsuren, Choimaa Schneider, Florian Erasmi, Stefan Bayarsaikhan, Uudus Sauer, Daniela Hauck, Markus Deutsche Forschungsgemeinschaft Volkswagen Foundation 2021 http://dx.doi.org/10.1186/s40663-021-00333-9 https://link.springer.com/content/pdf/10.1186/s40663-021-00333-9.pdf https://link.springer.com/article/10.1186/s40663-021-00333-9/fulltext.html en eng Springer Science and Business Media LLC https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 CC-BY Forest Ecosystems volume 8, issue 1 ISSN 2197-5620 Nature and Landscape Conservation Ecology Ecology, Evolution, Behavior and Systematics Forestry journal-article 2021 crspringernat https://doi.org/10.1186/s40663-021-00333-9 2022-01-04T07:34:30Z Abstract Background Forest distribution in the forest-steppe of Mongolia depends on relief, permafrost, and climate, and is highly sensitive to climate change and anthropogenic disturbance. Forest fires and logging decreased the forest area in the forest-steppe of Mongolia. The intention of this study was to identify the geoecological parameters that control forest distribution and living-tree biomass in this semi-arid environment. Based on these parameters, we aimed to delineate the area that forest might potentially occupy and to analyse the spatial patterns of actual and potential tree biomass. Methods We used a combination of various geographic methods in conjunction with statistical analyses to identify the key parameters controlling forest distribution. In several field campaigns, we mapped tree biomass and ecological parameters in a study area within the Tarvagatai Nuruu National Park (central Mongolia). Forest areas, topographic parameters and vegetation indices were obtained from remote sensing data. Significant correlations between forest distribution and living-tree biomass on one hand, and topographic parameters, climate data, and environmental conditions on the other hand, were used to delineate the area of potential forest distribution and to estimate total living-tree biomass for this area. Results Presence of forest on slopes was controlled by the factors elevation, aspect, slope, mean annual precipitation, and mean growing-season temperature. Combining these factors allowed for estimation of potential forest area but was less suitable for tree-biomass delineation. No significant differences in mean living-tree biomass existed between sites exposed to different local conditions with respect to forest fire, exploitation, and soil properties. Tree biomass was reduced at forest edges (defined as 30 m wide belt), in small fragmented and in large forest stands. Tree biomass in the study area was 20 × 10 9 g (1,086 km 2 forest area), whereas the potential tree biomass would reach up to 65 × 10 9 g (> 3168 km 2 ). Conclusions The obtained projection suggests that the potential forest area and tree biomass under the present climatic and geoecological conditions is three times that of the present forest area and biomass. Forest fires, which mostly affected large forest stands in the upper mountains, destroyed 43% of the forest area and 45% of the living-tree biomass in the study area over the period 1986–2017. Article in Journal/Newspaper permafrost Springer Nature (via Crossref) Forest Ecosystems 8 1
institution Open Polar
collection Springer Nature (via Crossref)
op_collection_id crspringernat
language English
topic Nature and Landscape Conservation
Ecology
Ecology, Evolution, Behavior and Systematics
Forestry
spellingShingle Nature and Landscape Conservation
Ecology
Ecology, Evolution, Behavior and Systematics
Forestry
Klinge, Michael
Dulamsuren, Choimaa
Schneider, Florian
Erasmi, Stefan
Bayarsaikhan, Uudus
Sauer, Daniela
Hauck, Markus
Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
topic_facet Nature and Landscape Conservation
Ecology
Ecology, Evolution, Behavior and Systematics
Forestry
description Abstract Background Forest distribution in the forest-steppe of Mongolia depends on relief, permafrost, and climate, and is highly sensitive to climate change and anthropogenic disturbance. Forest fires and logging decreased the forest area in the forest-steppe of Mongolia. The intention of this study was to identify the geoecological parameters that control forest distribution and living-tree biomass in this semi-arid environment. Based on these parameters, we aimed to delineate the area that forest might potentially occupy and to analyse the spatial patterns of actual and potential tree biomass. Methods We used a combination of various geographic methods in conjunction with statistical analyses to identify the key parameters controlling forest distribution. In several field campaigns, we mapped tree biomass and ecological parameters in a study area within the Tarvagatai Nuruu National Park (central Mongolia). Forest areas, topographic parameters and vegetation indices were obtained from remote sensing data. Significant correlations between forest distribution and living-tree biomass on one hand, and topographic parameters, climate data, and environmental conditions on the other hand, were used to delineate the area of potential forest distribution and to estimate total living-tree biomass for this area. Results Presence of forest on slopes was controlled by the factors elevation, aspect, slope, mean annual precipitation, and mean growing-season temperature. Combining these factors allowed for estimation of potential forest area but was less suitable for tree-biomass delineation. No significant differences in mean living-tree biomass existed between sites exposed to different local conditions with respect to forest fire, exploitation, and soil properties. Tree biomass was reduced at forest edges (defined as 30 m wide belt), in small fragmented and in large forest stands. Tree biomass in the study area was 20 × 10 9 g (1,086 km 2 forest area), whereas the potential tree biomass would reach up to 65 × 10 9 g (> 3168 km 2 ). Conclusions The obtained projection suggests that the potential forest area and tree biomass under the present climatic and geoecological conditions is three times that of the present forest area and biomass. Forest fires, which mostly affected large forest stands in the upper mountains, destroyed 43% of the forest area and 45% of the living-tree biomass in the study area over the period 1986–2017.
author2 Deutsche Forschungsgemeinschaft
Volkswagen Foundation
format Article in Journal/Newspaper
author Klinge, Michael
Dulamsuren, Choimaa
Schneider, Florian
Erasmi, Stefan
Bayarsaikhan, Uudus
Sauer, Daniela
Hauck, Markus
author_facet Klinge, Michael
Dulamsuren, Choimaa
Schneider, Florian
Erasmi, Stefan
Bayarsaikhan, Uudus
Sauer, Daniela
Hauck, Markus
author_sort Klinge, Michael
title Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
title_short Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
title_full Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
title_fullStr Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
title_full_unstemmed Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia
title_sort geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of central mongolia
publisher Springer Science and Business Media LLC
publishDate 2021
url http://dx.doi.org/10.1186/s40663-021-00333-9
https://link.springer.com/content/pdf/10.1186/s40663-021-00333-9.pdf
https://link.springer.com/article/10.1186/s40663-021-00333-9/fulltext.html
genre permafrost
genre_facet permafrost
op_source Forest Ecosystems
volume 8, issue 1
ISSN 2197-5620
op_rights https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1186/s40663-021-00333-9
container_title Forest Ecosystems
container_volume 8
container_issue 1
_version_ 1766166985459105792