How animals distribute themselves in space: energy landscapes of Antarctic avian predators
Abstract Background Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for dif...
Published in: | Movement Ecology |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Other Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer Science and Business Media LLC
2021
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1186/s40462-021-00255-9 https://link.springer.com/content/pdf/10.1186/s40462-021-00255-9.pdf https://link.springer.com/article/10.1186/s40462-021-00255-9/fulltext.html |
id |
crspringernat:10.1186/s40462-021-00255-9 |
---|---|
record_format |
openpolar |
spelling |
crspringernat:10.1186/s40462-021-00255-9 2023-05-15T14:12:06+02:00 How animals distribute themselves in space: energy landscapes of Antarctic avian predators Masello, Juan F. Barbosa, Andres Kato, Akiko Mattern, Thomas Medeiros, Renata Stockdale, Jennifer E. Kümmel, Marc N. Bustamante, Paco Belliure, Josabel Benzal, Jesús Colominas-Ciuró, Roger Menéndez-Blázquez, Javier Griep, Sven Goesmann, Alexander Symondson, William O. C. Quillfeldt, Petra German Science Foundation Agencia Estatal de Investigación Centre for Ecology and Hydrology BMBF Justus-Liebig-Universität Gießen 2021 http://dx.doi.org/10.1186/s40462-021-00255-9 https://link.springer.com/content/pdf/10.1186/s40462-021-00255-9.pdf https://link.springer.com/article/10.1186/s40462-021-00255-9/fulltext.html en eng Springer Science and Business Media LLC https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 CC-BY Movement Ecology volume 9, issue 1 ISSN 2051-3933 Ecology, Evolution, Behavior and Systematics journal-article 2021 crspringernat https://doi.org/10.1186/s40462-021-00255-9 2022-01-04T08:05:24Z Abstract Background Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for different animal populations. Organisms as diverse as fish, mammals, and birds will move in areas of the energy landscape that result in minimised costs and maximised energy gain. Recently, energy landscapes have been used to link energy gain and variable energy costs of foraging to breeding success, revealing their potential use for understanding demographic changes. Methods Using GPS-temperature-depth and tri-axial accelerometer loggers, stable isotope and molecular analyses of the diet, and leucocyte counts, we studied the response of gentoo ( Pygoscelis papua ) and chinstrap ( Pygoscelis antarcticus ) penguins to different energy landscapes and resources. We compared species and gentoo penguin populations with contrasting population trends. Results Between populations, gentoo penguins from Livingston Island (Antarctica), a site with positive population trends, foraged in energy landscape sectors that implied lower foraging costs per energy gained compared with those around New Island (Falkland/Malvinas Islands; sub-Antarctic), a breeding site with fluctuating energy costs of foraging, breeding success and populations. Between species, chinstrap penguins foraged in sectors of the energy landscape with lower foraging costs per bottom time, a proxy for energy gain. They also showed lower physiological stress, as revealed by leucocyte counts, and higher breeding success than gentoo penguins. In terms of diet, we found a flexible foraging ecology in gentoo penguins but a narrow foraging niche for chinstraps. Conclusions The lower foraging costs incurred by the gentoo penguins from Livingston, may favour a higher breeding success that would explain the species’ positive population trend in the Antarctic Peninsula. The lower foraging costs in chinstrap penguins may also explain their higher breeding success, compared to gentoos from Antarctica but not their negative population trend. Altogether, our results suggest a link between energy landscapes and breeding success mediated by the physiological condition. Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Antarctica antarcticus Gentoo penguin Livingston Island Pygoscelis papua Springer Nature (via Crossref) Antarctic Antarctic Peninsula Livingston Island ENVELOPE(-60.500,-60.500,-62.600,-62.600) The Antarctic Movement Ecology 9 1 |
institution |
Open Polar |
collection |
Springer Nature (via Crossref) |
op_collection_id |
crspringernat |
language |
English |
topic |
Ecology, Evolution, Behavior and Systematics |
spellingShingle |
Ecology, Evolution, Behavior and Systematics Masello, Juan F. Barbosa, Andres Kato, Akiko Mattern, Thomas Medeiros, Renata Stockdale, Jennifer E. Kümmel, Marc N. Bustamante, Paco Belliure, Josabel Benzal, Jesús Colominas-Ciuró, Roger Menéndez-Blázquez, Javier Griep, Sven Goesmann, Alexander Symondson, William O. C. Quillfeldt, Petra How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
topic_facet |
Ecology, Evolution, Behavior and Systematics |
description |
Abstract Background Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for different animal populations. Organisms as diverse as fish, mammals, and birds will move in areas of the energy landscape that result in minimised costs and maximised energy gain. Recently, energy landscapes have been used to link energy gain and variable energy costs of foraging to breeding success, revealing their potential use for understanding demographic changes. Methods Using GPS-temperature-depth and tri-axial accelerometer loggers, stable isotope and molecular analyses of the diet, and leucocyte counts, we studied the response of gentoo ( Pygoscelis papua ) and chinstrap ( Pygoscelis antarcticus ) penguins to different energy landscapes and resources. We compared species and gentoo penguin populations with contrasting population trends. Results Between populations, gentoo penguins from Livingston Island (Antarctica), a site with positive population trends, foraged in energy landscape sectors that implied lower foraging costs per energy gained compared with those around New Island (Falkland/Malvinas Islands; sub-Antarctic), a breeding site with fluctuating energy costs of foraging, breeding success and populations. Between species, chinstrap penguins foraged in sectors of the energy landscape with lower foraging costs per bottom time, a proxy for energy gain. They also showed lower physiological stress, as revealed by leucocyte counts, and higher breeding success than gentoo penguins. In terms of diet, we found a flexible foraging ecology in gentoo penguins but a narrow foraging niche for chinstraps. Conclusions The lower foraging costs incurred by the gentoo penguins from Livingston, may favour a higher breeding success that would explain the species’ positive population trend in the Antarctic Peninsula. The lower foraging costs in chinstrap penguins may also explain their higher breeding success, compared to gentoos from Antarctica but not their negative population trend. Altogether, our results suggest a link between energy landscapes and breeding success mediated by the physiological condition. |
author2 |
German Science Foundation Agencia Estatal de Investigación Centre for Ecology and Hydrology BMBF Justus-Liebig-Universität Gießen |
format |
Article in Journal/Newspaper |
author |
Masello, Juan F. Barbosa, Andres Kato, Akiko Mattern, Thomas Medeiros, Renata Stockdale, Jennifer E. Kümmel, Marc N. Bustamante, Paco Belliure, Josabel Benzal, Jesús Colominas-Ciuró, Roger Menéndez-Blázquez, Javier Griep, Sven Goesmann, Alexander Symondson, William O. C. Quillfeldt, Petra |
author_facet |
Masello, Juan F. Barbosa, Andres Kato, Akiko Mattern, Thomas Medeiros, Renata Stockdale, Jennifer E. Kümmel, Marc N. Bustamante, Paco Belliure, Josabel Benzal, Jesús Colominas-Ciuró, Roger Menéndez-Blázquez, Javier Griep, Sven Goesmann, Alexander Symondson, William O. C. Quillfeldt, Petra |
author_sort |
Masello, Juan F. |
title |
How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
title_short |
How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
title_full |
How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
title_fullStr |
How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
title_full_unstemmed |
How animals distribute themselves in space: energy landscapes of Antarctic avian predators |
title_sort |
how animals distribute themselves in space: energy landscapes of antarctic avian predators |
publisher |
Springer Science and Business Media LLC |
publishDate |
2021 |
url |
http://dx.doi.org/10.1186/s40462-021-00255-9 https://link.springer.com/content/pdf/10.1186/s40462-021-00255-9.pdf https://link.springer.com/article/10.1186/s40462-021-00255-9/fulltext.html |
long_lat |
ENVELOPE(-60.500,-60.500,-62.600,-62.600) |
geographic |
Antarctic Antarctic Peninsula Livingston Island The Antarctic |
geographic_facet |
Antarctic Antarctic Peninsula Livingston Island The Antarctic |
genre |
Antarc* Antarctic Antarctic Peninsula Antarctica antarcticus Gentoo penguin Livingston Island Pygoscelis papua |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Antarctica antarcticus Gentoo penguin Livingston Island Pygoscelis papua |
op_source |
Movement Ecology volume 9, issue 1 ISSN 2051-3933 |
op_rights |
https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.1186/s40462-021-00255-9 |
container_title |
Movement Ecology |
container_volume |
9 |
container_issue |
1 |
_version_ |
1766284360930033664 |