FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales

Abstract Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg’s killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-runn...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Bergler, Christian, Gebhard, Alexander, Towers, Jared R., Butyrev, Leonid, Sutton, Gary J., Shaw, Tasli J. H., Maier, Andreas, Nöth, Elmar
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1038/s41598-021-02506-6
https://www.nature.com/articles/s41598-021-02506-6.pdf
https://www.nature.com/articles/s41598-021-02506-6
id crspringernat:10.1038/s41598-021-02506-6
record_format openpolar
spelling crspringernat:10.1038/s41598-021-02506-6 2023-05-15T17:03:28+02:00 FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales Bergler, Christian Gebhard, Alexander Towers, Jared R. Butyrev, Leonid Sutton, Gary J. Shaw, Tasli J. H. Maier, Andreas Nöth, Elmar 2021 http://dx.doi.org/10.1038/s41598-021-02506-6 https://www.nature.com/articles/s41598-021-02506-6.pdf https://www.nature.com/articles/s41598-021-02506-6 en eng Springer Science and Business Media LLC https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 CC-BY Scientific Reports volume 11, issue 1 ISSN 2045-2322 Multidisciplinary journal-article 2021 crspringernat https://doi.org/10.1038/s41598-021-02506-6 2022-01-04T14:48:23Z Abstract Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg’s killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-running cetacean photo-identification datasets. However, data maintenance and analysis are extremely time and resource consuming. This study transfers the procedure of killer whale image identification into a fully automated, multi-stage, deep learning framework, entitled FIN-PRINT. It is composed of multiple sequentially ordered sub-components. FIN-PRINT is trained and evaluated on a dataset collected over an 8-year period (2011–2018) in the coastal waters off western North America, including 121,000 human-annotated identification images of Bigg’s killer whales. At first, object detection is performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 93.4% mean-average-precision (mAP). Second, all previously identified natural killer whale markings are extracted. The third step introduces a data enhancement mechanism by filtering between valid and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 95.2% accuracy. The fourth and final step involves multi-class individual recognition. When evaluated on the network test set, it achieved an accuracy of 92.5% with 97.2% top-3 unweighted accuracy (TUA) for the 100 most commonly photo-identified killer whales. Additionally, the method achieved an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 most common killer whales. The source code of FIN-PRINT can be adapted to other species and will be publicly available. Article in Journal/Newspaper Killer Whale Killer whale Springer Nature (via Crossref) Scientific Reports 11 1
institution Open Polar
collection Springer Nature (via Crossref)
op_collection_id crspringernat
language English
topic Multidisciplinary
spellingShingle Multidisciplinary
Bergler, Christian
Gebhard, Alexander
Towers, Jared R.
Butyrev, Leonid
Sutton, Gary J.
Shaw, Tasli J. H.
Maier, Andreas
Nöth, Elmar
FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
topic_facet Multidisciplinary
description Abstract Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg’s killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-running cetacean photo-identification datasets. However, data maintenance and analysis are extremely time and resource consuming. This study transfers the procedure of killer whale image identification into a fully automated, multi-stage, deep learning framework, entitled FIN-PRINT. It is composed of multiple sequentially ordered sub-components. FIN-PRINT is trained and evaluated on a dataset collected over an 8-year period (2011–2018) in the coastal waters off western North America, including 121,000 human-annotated identification images of Bigg’s killer whales. At first, object detection is performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 93.4% mean-average-precision (mAP). Second, all previously identified natural killer whale markings are extracted. The third step introduces a data enhancement mechanism by filtering between valid and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 95.2% accuracy. The fourth and final step involves multi-class individual recognition. When evaluated on the network test set, it achieved an accuracy of 92.5% with 97.2% top-3 unweighted accuracy (TUA) for the 100 most commonly photo-identified killer whales. Additionally, the method achieved an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 most common killer whales. The source code of FIN-PRINT can be adapted to other species and will be publicly available.
format Article in Journal/Newspaper
author Bergler, Christian
Gebhard, Alexander
Towers, Jared R.
Butyrev, Leonid
Sutton, Gary J.
Shaw, Tasli J. H.
Maier, Andreas
Nöth, Elmar
author_facet Bergler, Christian
Gebhard, Alexander
Towers, Jared R.
Butyrev, Leonid
Sutton, Gary J.
Shaw, Tasli J. H.
Maier, Andreas
Nöth, Elmar
author_sort Bergler, Christian
title FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
title_short FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
title_full FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
title_fullStr FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
title_full_unstemmed FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
title_sort fin-print a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales
publisher Springer Science and Business Media LLC
publishDate 2021
url http://dx.doi.org/10.1038/s41598-021-02506-6
https://www.nature.com/articles/s41598-021-02506-6.pdf
https://www.nature.com/articles/s41598-021-02506-6
genre Killer Whale
Killer whale
genre_facet Killer Whale
Killer whale
op_source Scientific Reports
volume 11, issue 1
ISSN 2045-2322
op_rights https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41598-021-02506-6
container_title Scientific Reports
container_volume 11
container_issue 1
_version_ 1766057337811894272