The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application

Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Rake, Lior, Pinkert, Shmulik
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1038/s41598-021-00777-7
https://www.nature.com/articles/s41598-021-00777-7.pdf
https://www.nature.com/articles/s41598-021-00777-7
id crspringernat:10.1038/s41598-021-00777-7
record_format openpolar
spelling crspringernat:10.1038/s41598-021-00777-7 2023-05-15T15:13:58+02:00 The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application Rake, Lior Pinkert, Shmulik 2021 http://dx.doi.org/10.1038/s41598-021-00777-7 https://www.nature.com/articles/s41598-021-00777-7.pdf https://www.nature.com/articles/s41598-021-00777-7 en eng Springer Science and Business Media LLC https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 CC-BY Scientific Reports volume 11, issue 1 ISSN 2045-2322 Multidisciplinary journal-article 2021 crspringernat https://doi.org/10.1038/s41598-021-00777-7 2022-01-04T14:55:27Z Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during the gas extraction process. The vast majority of geotechnical investigations of MHBS have been conducted on laboratory-formed samples due to the complex procedure of undisturbed sample extraction. One of the most commonly used hydrate laboratory-formation methods is the excess-gas method. This work investigates fundamental aspects in the excess-gas formation of MHBS that are affecting the geotechnical interpretation and modeling. The work finds that (1) the measured temperature in the experimental system may be quite different from the in-sample temperature, and can reach 4 $$^\circ$$ ∘ C difference during thermodynamic processes. This potential difference must be considered in investigation of hydrate formation or dissociation, (2) various calculation approaches may yield different hydrate saturation values of up to tens of percentages difference in high hydrate saturations. The calculation formulas are specified together with the fundamental difference between them, (3) the water mixture method during the sample assembling is critical for homogeneous MHBS laboratory formation, in which a maximum initial water content threshold of 9.1 to 1.3 % are obtained for a minimal fraction size of 0.01 to 0.8 mm, respectively, (4) the hydrate formation duration may influence the MHBS properties, and should be rigorously estimated according to the real-time gas consumption convergence. The outcomes of this work may contribute to the integration of data sets derived from various experiments for the study of MHBS mechanical behavior. Article in Journal/Newspaper Arctic Methane hydrate permafrost Springer Nature (via Crossref) Arctic Scientific Reports 11 1
institution Open Polar
collection Springer Nature (via Crossref)
op_collection_id crspringernat
language English
topic Multidisciplinary
spellingShingle Multidisciplinary
Rake, Lior
Pinkert, Shmulik
The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
topic_facet Multidisciplinary
description Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during the gas extraction process. The vast majority of geotechnical investigations of MHBS have been conducted on laboratory-formed samples due to the complex procedure of undisturbed sample extraction. One of the most commonly used hydrate laboratory-formation methods is the excess-gas method. This work investigates fundamental aspects in the excess-gas formation of MHBS that are affecting the geotechnical interpretation and modeling. The work finds that (1) the measured temperature in the experimental system may be quite different from the in-sample temperature, and can reach 4 $$^\circ$$ ∘ C difference during thermodynamic processes. This potential difference must be considered in investigation of hydrate formation or dissociation, (2) various calculation approaches may yield different hydrate saturation values of up to tens of percentages difference in high hydrate saturations. The calculation formulas are specified together with the fundamental difference between them, (3) the water mixture method during the sample assembling is critical for homogeneous MHBS laboratory formation, in which a maximum initial water content threshold of 9.1 to 1.3 % are obtained for a minimal fraction size of 0.01 to 0.8 mm, respectively, (4) the hydrate formation duration may influence the MHBS properties, and should be rigorously estimated according to the real-time gas consumption convergence. The outcomes of this work may contribute to the integration of data sets derived from various experiments for the study of MHBS mechanical behavior.
format Article in Journal/Newspaper
author Rake, Lior
Pinkert, Shmulik
author_facet Rake, Lior
Pinkert, Shmulik
author_sort Rake, Lior
title The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_short The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_full The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_fullStr The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_full_unstemmed The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_sort ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
publisher Springer Science and Business Media LLC
publishDate 2021
url http://dx.doi.org/10.1038/s41598-021-00777-7
https://www.nature.com/articles/s41598-021-00777-7.pdf
https://www.nature.com/articles/s41598-021-00777-7
geographic Arctic
geographic_facet Arctic
genre Arctic
Methane hydrate
permafrost
genre_facet Arctic
Methane hydrate
permafrost
op_source Scientific Reports
volume 11, issue 1
ISSN 2045-2322
op_rights https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41598-021-00777-7
container_title Scientific Reports
container_volume 11
container_issue 1
_version_ 1766344465655529472