Seasonal Arctic sea ice forecasting with probabilistic deep learning

Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dy...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Andersson, Tom R., Hosking, J. Scott, Pérez-Ortiz, María, Paige, Brooks, Elliott, Andrew, Russell, Chris, Law, Stephen, Jones, Daniel C., Wilkinson, Jeremy, Phillips, Tony, Byrne, James, Tietsche, Steffen, Sarojini, Beena Balan, Blanchard-Wrigglesworth, Eduardo, Aksenov, Yevgeny, Downie, Rod, Shuckburgh, Emily
Other Authors: Alan Turing Institute
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1038/s41467-021-25257-4
https://www.nature.com/articles/s41467-021-25257-4.pdf
https://www.nature.com/articles/s41467-021-25257-4
id crspringernat:10.1038/s41467-021-25257-4
record_format openpolar
spelling crspringernat:10.1038/s41467-021-25257-4 2023-05-15T14:55:18+02:00 Seasonal Arctic sea ice forecasting with probabilistic deep learning Andersson, Tom R. Hosking, J. Scott Pérez-Ortiz, María Paige, Brooks Elliott, Andrew Russell, Chris Law, Stephen Jones, Daniel C. Wilkinson, Jeremy Phillips, Tony Byrne, James Tietsche, Steffen Sarojini, Beena Balan Blanchard-Wrigglesworth, Eduardo Aksenov, Yevgeny Downie, Rod Shuckburgh, Emily Alan Turing Institute 2021 http://dx.doi.org/10.1038/s41467-021-25257-4 https://www.nature.com/articles/s41467-021-25257-4.pdf https://www.nature.com/articles/s41467-021-25257-4 en eng Springer Science and Business Media LLC https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0 CC-BY Nature Communications volume 12, issue 1 ISSN 2041-1723 General Physics and Astronomy General Biochemistry, Genetics and Molecular Biology General Chemistry journal-article 2021 crspringernat https://doi.org/10.1038/s41467-021-25257-4 2022-01-04T16:07:14Z Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss. Article in Journal/Newspaper Arctic Sea ice Springer Nature (via Crossref) Arctic Nature Communications 12 1
institution Open Polar
collection Springer Nature (via Crossref)
op_collection_id crspringernat
language English
topic General Physics and Astronomy
General Biochemistry, Genetics and Molecular Biology
General Chemistry
spellingShingle General Physics and Astronomy
General Biochemistry, Genetics and Molecular Biology
General Chemistry
Andersson, Tom R.
Hosking, J. Scott
Pérez-Ortiz, María
Paige, Brooks
Elliott, Andrew
Russell, Chris
Law, Stephen
Jones, Daniel C.
Wilkinson, Jeremy
Phillips, Tony
Byrne, James
Tietsche, Steffen
Sarojini, Beena Balan
Blanchard-Wrigglesworth, Eduardo
Aksenov, Yevgeny
Downie, Rod
Shuckburgh, Emily
Seasonal Arctic sea ice forecasting with probabilistic deep learning
topic_facet General Physics and Astronomy
General Biochemistry, Genetics and Molecular Biology
General Chemistry
description Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss.
author2 Alan Turing Institute
format Article in Journal/Newspaper
author Andersson, Tom R.
Hosking, J. Scott
Pérez-Ortiz, María
Paige, Brooks
Elliott, Andrew
Russell, Chris
Law, Stephen
Jones, Daniel C.
Wilkinson, Jeremy
Phillips, Tony
Byrne, James
Tietsche, Steffen
Sarojini, Beena Balan
Blanchard-Wrigglesworth, Eduardo
Aksenov, Yevgeny
Downie, Rod
Shuckburgh, Emily
author_facet Andersson, Tom R.
Hosking, J. Scott
Pérez-Ortiz, María
Paige, Brooks
Elliott, Andrew
Russell, Chris
Law, Stephen
Jones, Daniel C.
Wilkinson, Jeremy
Phillips, Tony
Byrne, James
Tietsche, Steffen
Sarojini, Beena Balan
Blanchard-Wrigglesworth, Eduardo
Aksenov, Yevgeny
Downie, Rod
Shuckburgh, Emily
author_sort Andersson, Tom R.
title Seasonal Arctic sea ice forecasting with probabilistic deep learning
title_short Seasonal Arctic sea ice forecasting with probabilistic deep learning
title_full Seasonal Arctic sea ice forecasting with probabilistic deep learning
title_fullStr Seasonal Arctic sea ice forecasting with probabilistic deep learning
title_full_unstemmed Seasonal Arctic sea ice forecasting with probabilistic deep learning
title_sort seasonal arctic sea ice forecasting with probabilistic deep learning
publisher Springer Science and Business Media LLC
publishDate 2021
url http://dx.doi.org/10.1038/s41467-021-25257-4
https://www.nature.com/articles/s41467-021-25257-4.pdf
https://www.nature.com/articles/s41467-021-25257-4
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_source Nature Communications
volume 12, issue 1
ISSN 2041-1723
op_rights https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41467-021-25257-4
container_title Nature Communications
container_volume 12
container_issue 1
_version_ 1766327101957341184