Origin of Indian Ocean multidecadal climate variability: role of the North Atlantic Oscillation

Abstract The multidecadal variability of Indian Ocean sea surface temperature (IOSST) has an important impact on both the regional Indian Ocean climate and the global climate. Here, we explore multidecadal variability in the annual IOSST. Observational analysis shows that the annual IOSST multidecad...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Xie, Tiejun, Li, Jianping, Chen, Kaiqi, Zhang, Yazhou, Sun, Cheng
Other Authors: the National Key R&D Program of China, National Natural Science Foundation of China (NSFC) Project
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1007/s00382-021-05643-w
https://link.springer.com/content/pdf/10.1007/s00382-021-05643-w.pdf
https://link.springer.com/article/10.1007/s00382-021-05643-w/fulltext.html
Description
Summary:Abstract The multidecadal variability of Indian Ocean sea surface temperature (IOSST) has an important impact on both the regional Indian Ocean climate and the global climate. Here, we explore multidecadal variability in the annual IOSST. Observational analysis shows that the annual IOSST multidecadal variability is not only related to the Pacific Decadal Oscillation (PDO), but also to the North Atlantic Oscillation (NAO). The NAO leads by 15–20 years the detrended annual IOSST in which the PDO signal of the same period has been removed. Further analysis reveals that the NAO leads the annual IOSST multidecadal variability through its leading effect on the Atlantic Multidecadal Oscillation (AMO). The AMO affects the vertical wind anomaly in the Indian Ocean region through the Atlantic–Indian Ocean multidecadal teleconnection (AIMT), which in turn affects the net longwave radiation in the Indian Ocean region, thus driving the annual IOSST multidecadal variability. A Hasselmann model based on NAO and PDO further verify the joint influence of the NAO and PDO on the multidecadal variability of the IOSST. A PDO-based linear model and a climate model that incorporates the NAO signal are also constructed for the annual IOSST. Results show that the climate model with the NAO signal can better simulate the annual IOSST. This again verifies that the NAO is part of the annual IOSST multidecadal variability source, indicating that the annual IOSST variability may be due to the combined influences of the NAO and PDO.