ENSO’s impacts on the tropical Indian and Atlantic Oceans via tropical atmospheric processes: observations versus CMIP5 simulations
Abstract This study compares the impacts of the El Niño–Southern Oscillation (ENSO) on sea surface temperatures (SSTs) in the tropical North Atlantic Ocean and the tropical Indian Ocean during 1958–2004. It is found that the tropical atmospheric processes mediating the ENSO impacts are different bet...
Published in: | Climate Dynamics |
---|---|
Main Authors: | , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer Science and Business Media LLC
2020
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/s00382-020-05247-w https://link.springer.com/content/pdf/10.1007/s00382-020-05247-w.pdf https://link.springer.com/article/10.1007/s00382-020-05247-w/fulltext.html |
Summary: | Abstract This study compares the impacts of the El Niño–Southern Oscillation (ENSO) on sea surface temperatures (SSTs) in the tropical North Atlantic Ocean and the tropical Indian Ocean during 1958–2004. It is found that the tropical atmospheric processes mediating the ENSO impacts are different between the two oceans for two reasons. First, the ENSO-induced anomalous Walker circulation is more extensive over the Atlantic than over the Indian Ocean. As a result, the atmospheric bridge (AB) mechanism is the major contributor to the differences in ENSO teleconnections between the two oceans. Secondly, SSTs in the tropical North Atlantic are under a greater control of the atmospheric thermal forcing than those in the tropical Indian Ocean. Due to these different controls, the tropospheric temperature (TT) mechanism also contributes to the different ENSO teleconnections. When compared with the observations, the mean of thirty-seven models from the Coupled Model Intercomparison Project Phase 5 overestimates the ENSO-induced SST response in the tropical Indian Ocean but underestimates the response in the tropical North Atlantic. The overestimation is brought about by a westward extension of ENSO SST anomalies in the models, which causes the AB mechanism to produce an overly strong impact on Indian Ocean SSTs. On the other hand, the underestimation is caused by a weaker-than-observed sensitivity in the simulated Atlantic SSTs to the thermal forcing produced by the TT mechanism. |
---|