Chinese loess and the evolution of the east Asian monsoon

The history of the east Asian monsoon has been reconstructed from proxy records from the aeolian loess-palaeosol sequence in the Loess Plateau. It has been suggested that the monsoonal atmospheric circulation was initiated abruptly at 2.6 M yr BP. From about 1.2 M yrBP, the climate was characterized...

Full description

Bibliographic Details
Published in:Progress in Physical Geography: Earth and Environment
Main Authors: Huang, Chun Chang, Pang, Jiangli, Zhao, Jingpo
Format: Article in Journal/Newspaper
Language:English
Published: SAGE Publications 2000
Subjects:
Online Access:http://dx.doi.org/10.1177/030913330002400104
https://journals.sagepub.com/doi/pdf/10.1177/030913330002400104
Description
Summary:The history of the east Asian monsoon has been reconstructed from proxy records from the aeolian loess-palaeosol sequence in the Loess Plateau. It has been suggested that the monsoonal atmospheric circulation was initiated abruptly at 2.6 M yr BP. From about 1.2 M yrBP, the climate was characterized by contrasts between dry-cold periods brought on by the northwesterly monsoon and humid-warm periods brought about by the southeasterly monsoon. The periodic changes related to the earth’s orbital cycles have been clearly identified. Since about 0.6 M yr BP, the monsoonal climatic variations have become extremely pronounced and these correlate well with the marine isotope stages. The three-step shift in the east Asian monsoon towards greater variation seems to have been caused by the accelerated uplifting of the Tibetan Plateau. Climatic change during the last interglacial-glacial cycle recorded in the loess seems to match the SPECMAP δ 18 O record exactly. Six episodes of extremely strong dustfall events (brought on by the strengthened northwesterly monsoon winds) have been identified during the last glaciation. The ages of these episodes seem to match the Heinrich events in the North Atlantic and the Dansgaard-Oeschger events in Greenland. It is therefore suggested that the atmospheric circulation in east Asia is very sensitive to climatic change in high latitudes and has been responsive to global climatic change over the last 2.6 M yr. Millennial-scale climatic variations have also been identified in the Holocene loess. The article concludes by suggesting areas of research that might be undertaken in order to improve our understanding of the Chinese loess and of the evolution of the east Asian monsoon.