Using food web dominator trees to catch secondary extinctions in action
In ecosystems, a single extinction event can give rise to multiple ‘secondary’ extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds the...
Published in: | Philosophical Transactions of the Royal Society B: Biological Sciences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
The Royal Society
2009
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/full-xml/10.1098/rstb.2008.0278 |
id |
crroyalsociety:10.1098/rstb.2008.0278 |
---|---|
record_format |
openpolar |
spelling |
crroyalsociety:10.1098/rstb.2008.0278 2024-09-15T17:57:56+00:00 Using food web dominator trees to catch secondary extinctions in action Bodini, Antonio Bellingeri, Michele Allesina, Stefano Bondavalli, Cristina 2009 http://dx.doi.org/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/full-xml/10.1098/rstb.2008.0278 en eng The Royal Society https://royalsociety.org/journals/ethics-policies/data-sharing-mining/ Philosophical Transactions of the Royal Society B: Biological Sciences volume 364, issue 1524, page 1725-1731 ISSN 0962-8436 1471-2970 journal-article 2009 crroyalsociety https://doi.org/10.1098/rstb.2008.0278 2024-08-26T04:20:53Z In ecosystems, a single extinction event can give rise to multiple ‘secondary’ extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds their complex architecture, yielding a simpler topology made of linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it and, as such, it is indispensable for their survival. To assess the predictive potential of the dominator tree, we compare its predictions with the effects that followed the collapse of the capelin ( Mallotus villosus ) in the Barents Sea ecosystem. To this end, we first compiled a food web for this ecosystem, then we built the corresponding dominator tree and, finally, we observed whether model predictions matched the empirical observations. This analysis shows the potential and the drawbacks of the dominator trees as a tool for understanding the causes and consequences of extinctions in food webs. Article in Journal/Newspaper Barents Sea The Royal Society Philosophical Transactions of the Royal Society B: Biological Sciences 364 1524 1725 1731 |
institution |
Open Polar |
collection |
The Royal Society |
op_collection_id |
crroyalsociety |
language |
English |
description |
In ecosystems, a single extinction event can give rise to multiple ‘secondary’ extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds their complex architecture, yielding a simpler topology made of linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it and, as such, it is indispensable for their survival. To assess the predictive potential of the dominator tree, we compare its predictions with the effects that followed the collapse of the capelin ( Mallotus villosus ) in the Barents Sea ecosystem. To this end, we first compiled a food web for this ecosystem, then we built the corresponding dominator tree and, finally, we observed whether model predictions matched the empirical observations. This analysis shows the potential and the drawbacks of the dominator trees as a tool for understanding the causes and consequences of extinctions in food webs. |
format |
Article in Journal/Newspaper |
author |
Bodini, Antonio Bellingeri, Michele Allesina, Stefano Bondavalli, Cristina |
spellingShingle |
Bodini, Antonio Bellingeri, Michele Allesina, Stefano Bondavalli, Cristina Using food web dominator trees to catch secondary extinctions in action |
author_facet |
Bodini, Antonio Bellingeri, Michele Allesina, Stefano Bondavalli, Cristina |
author_sort |
Bodini, Antonio |
title |
Using food web dominator trees to catch secondary extinctions in action |
title_short |
Using food web dominator trees to catch secondary extinctions in action |
title_full |
Using food web dominator trees to catch secondary extinctions in action |
title_fullStr |
Using food web dominator trees to catch secondary extinctions in action |
title_full_unstemmed |
Using food web dominator trees to catch secondary extinctions in action |
title_sort |
using food web dominator trees to catch secondary extinctions in action |
publisher |
The Royal Society |
publishDate |
2009 |
url |
http://dx.doi.org/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2008.0278 https://royalsocietypublishing.org/doi/full-xml/10.1098/rstb.2008.0278 |
genre |
Barents Sea |
genre_facet |
Barents Sea |
op_source |
Philosophical Transactions of the Royal Society B: Biological Sciences volume 364, issue 1524, page 1725-1731 ISSN 0962-8436 1471-2970 |
op_rights |
https://royalsociety.org/journals/ethics-policies/data-sharing-mining/ |
op_doi |
https://doi.org/10.1098/rstb.2008.0278 |
container_title |
Philosophical Transactions of the Royal Society B: Biological Sciences |
container_volume |
364 |
container_issue |
1524 |
container_start_page |
1725 |
op_container_end_page |
1731 |
_version_ |
1810434154271080448 |