Successful surf-riding on size spectra: the secret of survival in the sea

All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf...

Full description

Bibliographic Details
Published in:Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 1994
Subjects:
Online Access:http://dx.doi.org/10.1098/rstb.1994.0006
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.1994.0006
id crroyalsociety:10.1098/rstb.1994.0006
record_format openpolar
spelling crroyalsociety:10.1098/rstb.1994.0006 2024-10-13T14:05:22+00:00 Successful surf-riding on size spectra: the secret of survival in the sea 1994 http://dx.doi.org/10.1098/rstb.1994.0006 https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.1994.0006 en eng The Royal Society https://royalsociety.org/journals/ethics-policies/data-sharing-mining/ Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences volume 343, issue 1303, page 41-49 ISSN 0962-8436 1471-2970 journal-article 1994 crroyalsociety https://doi.org/10.1098/rstb.1994.0006 2024-09-17T04:34:46Z All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf seas do so against a scenery dominated by seasonal changes in the size-spectrum of other players. Successful survival in such an environment requires species to ride the big wave of annual productivity as it rolls through the extended size spectrum from phytoplankton to large fish. This wave flattens and broadens as it moves towards higher sizes. We speculate that in a seasonal shelf seas environment the wave shape is such that the Sheldon-Sutcliffe spectrum of equal biomass per log size interval is approximately true as an annual average although it may not be true at any particular moment in the year. Such spectra are structured by biomass being moved up the size spectrum mainly by predation processes, with growth of individuals being a second order process. However, the problem for an individual is to grow up through a size spectrum from its size at birth to its size at reproduction. Hence species need to find survival paths through the fluctuating scenery. This scenery is composed of the biomass of the prey, that of animals of a similar size, and larger predators. The paths followed dictate the life-history strategies of the species. This central problem for sea dwellers in temperate and Arctic shelf seas generates a broad similarity in the choice of life-history strategy for many key players over quite wide geographic areas of the globe. In these seas, strategies of high fecundity, high mortality and high growth rate are particularly common while strategies of low fecundity and parental care are rare for much of the size range. These seas also seem to favour longer trophic chains than terrestrial systems and either several generations per year or multiannual life cycles rather than annual cycles. Article in Journal/Newspaper Arctic Phytoplankton The Royal Society Arctic Sutcliffe ENVELOPE(-81.383,-81.383,50.683,50.683) Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 343 1303 41 49
institution Open Polar
collection The Royal Society
op_collection_id crroyalsociety
language English
description All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf seas do so against a scenery dominated by seasonal changes in the size-spectrum of other players. Successful survival in such an environment requires species to ride the big wave of annual productivity as it rolls through the extended size spectrum from phytoplankton to large fish. This wave flattens and broadens as it moves towards higher sizes. We speculate that in a seasonal shelf seas environment the wave shape is such that the Sheldon-Sutcliffe spectrum of equal biomass per log size interval is approximately true as an annual average although it may not be true at any particular moment in the year. Such spectra are structured by biomass being moved up the size spectrum mainly by predation processes, with growth of individuals being a second order process. However, the problem for an individual is to grow up through a size spectrum from its size at birth to its size at reproduction. Hence species need to find survival paths through the fluctuating scenery. This scenery is composed of the biomass of the prey, that of animals of a similar size, and larger predators. The paths followed dictate the life-history strategies of the species. This central problem for sea dwellers in temperate and Arctic shelf seas generates a broad similarity in the choice of life-history strategy for many key players over quite wide geographic areas of the globe. In these seas, strategies of high fecundity, high mortality and high growth rate are particularly common while strategies of low fecundity and parental care are rare for much of the size range. These seas also seem to favour longer trophic chains than terrestrial systems and either several generations per year or multiannual life cycles rather than annual cycles.
format Article in Journal/Newspaper
title Successful surf-riding on size spectra: the secret of survival in the sea
spellingShingle Successful surf-riding on size spectra: the secret of survival in the sea
title_short Successful surf-riding on size spectra: the secret of survival in the sea
title_full Successful surf-riding on size spectra: the secret of survival in the sea
title_fullStr Successful surf-riding on size spectra: the secret of survival in the sea
title_full_unstemmed Successful surf-riding on size spectra: the secret of survival in the sea
title_sort successful surf-riding on size spectra: the secret of survival in the sea
publisher The Royal Society
publishDate 1994
url http://dx.doi.org/10.1098/rstb.1994.0006
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.1994.0006
long_lat ENVELOPE(-81.383,-81.383,50.683,50.683)
geographic Arctic
Sutcliffe
geographic_facet Arctic
Sutcliffe
genre Arctic
Phytoplankton
genre_facet Arctic
Phytoplankton
op_source Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
volume 343, issue 1303, page 41-49
ISSN 0962-8436 1471-2970
op_rights https://royalsociety.org/journals/ethics-policies/data-sharing-mining/
op_doi https://doi.org/10.1098/rstb.1994.0006
container_title Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
container_volume 343
container_issue 1303
container_start_page 41
op_container_end_page 49
_version_ 1812811460672225280