Sea-floor evolution: rare-earth evidence

A systematic survey of rare-earth (r.e.) abundances in submarine tholeiitic basalts along mid-oceanic ridges has been made by neutron activation analysis. The r.e. fractionation patterns are remarkably uniform along each mid-oceanic ridge and from one ridge to another (Juan de Fuca Ridge, East Pacif...

Full description

Bibliographic Details
Published in:Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 1971
Subjects:
Online Access:http://dx.doi.org/10.1098/rsta.1971.0021
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1971.0021
Description
Summary:A systematic survey of rare-earth (r.e.) abundances in submarine tholeiitic basalts along mid-oceanic ridges has been made by neutron activation analysis. The r.e. fractionation patterns are remarkably uniform along each mid-oceanic ridge and from one ridge to another (Juan de Fuca Ridge, East Pacific and Chile Rise, Pacific-Antarctic, Mid-Indian and Carlsberg Ridge, Gulf of Aden, Red Sea Trough and Reykjanes Ridge). The patterns are all depleted in light r.e. except for three samples (Gulf of Aden and Mid-Indian Ridge) which are unfractionated relative to chondrites. They contrast markedly with tholeiitic plateau basalt which are shown to be related to the early volcanic phases associated with continental drift. Tholeiitic plateau basalts are light r.e. enriched as are most continental rocks. Mid-ocean ridge basalts are also distinguishable from spatially related oceanic shield volcanoes of tholeiitic composition (Red Sea Trough-Jebel Teir Is., East Pacific Rise-Culpepper Island). Thus on a r.e. basis there are tholeiites within tholeiites. The r.e. difference between mid-ocean ridge tholeiites and tholeiitic plateau basalts can be related to distinct thermal and tectonic régimes and consequently magmatic modes and rates of intrusions from the low velocity layer in the upper mantle. The difference between continental and oceanic volcanism appears to be triggered by: (1) presence or absence of a moving continental lithosphere over the low velocity layer, and (2) whether or not major rifts tap the low velocity layer through the lithosphere. Fractional crystallization during ascent of melts before eruption at the ridge crest does not affect appreciably the relative r.e. patterns. R.e. in mid-ocean ridge basalts appear to intrinsically reflect their distribution in the upper mantle source, i.e. the low velocity layer. Based on secondary order r.e. variation of mid-ocean ridge basalts: (1) If fractional crystallization is invoked for the small r.e. variations, up to approximately 50 % extraction of olivine and ...