Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity
Avian influenza (AI) viruses are believed to be transmitted within wild aquatic bird populations through an indirect faecal–oral route involving contaminated water. This study examined the influence of filter-feeding bivalves, Corbicula fluminea , on the infectivity of AI virus in water. Clams were...
Published in: | Proceedings of the Royal Society B: Biological Sciences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
The Royal Society
2009
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1098/rspb.2009.0572 https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2009.0572 https://royalsocietypublishing.org/doi/full-xml/10.1098/rspb.2009.0572 |
Summary: | Avian influenza (AI) viruses are believed to be transmitted within wild aquatic bird populations through an indirect faecal–oral route involving contaminated water. This study examined the influence of filter-feeding bivalves, Corbicula fluminea , on the infectivity of AI virus in water. Clams were placed into individual flasks with distilled water inoculated 1:100 with a low pathogenic (LP) AI virus (A/Mallard/MN/190/99 (H3N8)). Viral titres in water with clams were significantly lower at 24 and 48 h post-inoculation compared to LPAI-infected water without clams. To determine whether clams affected the infectivity of AI viruses, 18 wood ducks ( Aix sponsa ) were divided into test groups and inoculated with a variety of treatments of clam supernatants, whole clams and water exposed to a high pathogenic (HP) AI (A/whooper swan/Mongolia/244/05 (H5N1)). None of the wood ducks inoculated with HPAI-infected water that was filtered by clams or that was inoculated with or fed tissue from these clams exhibited morbidity or mortality. All wood ducks exposed to either HPAI-infected water without clams or the original viral inoculum died. These results indicate that filter-feeding bivalves can remove and reduce the infectivity of AI viruses in water and demonstrate the need to examine biotic environmental factors that can influence AI virus transmission. |
---|